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¢ The balance scale task

e Variability

e The computational study of variability
¢ Simulations

e Results

¢ Conclusions

The Balance Scale Task

¢ Problem-solving and reasoning
o Will the scale tip right, tip left, or balance?

(Inhelder and Piaget, 1958)
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Assessing performance

» Use six different types of balance scale
problem:

Balance Conflict-weight
Welght Conflict-distance
Distance Conflict-balance
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Balance scale behaviour

e Behaviour is characterised in terms of rules

— Rruletnr | © Siegler’s four core rules

e More rules:

Rule I

Smallest Distance Down (SDD)

Balance '\
. Weight

Rule II

Qualitative Proporti ity (QP)

Rule IIT

Addition (Add)

Developmental profile

* Model of distribution of rules over age

From Jansen and van der Maas (2002)




Variability
» Differences or fluctuations in behaviour or strategy

"Substantial variability is present during learning, even
on tasks like the balance scale where most children
use systematic rules before and after learning
experiences...”

(Siegler and Chen, 1998, p303)

e Variability can be found both across individuals, and
within the behaviour of a single individual

¢ A high degree of variability has been found around
rule III

Why study variability?

¢ Within a single individual, increased variability
presages the onset of developmental
transitions

e Variability across individuals of the same age
provides insight into general and specific
intelligence

¢ Variations from the normal pathway are
found in disorders

Computational study of variability

¢ Changes to the model and the environment
(McClelland, 1989)
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Simulations

1. Computational resources
e Number of layers
e Number of hidden units

2. Environment
e Limited range of problem types
e Change frequency of problem types

3. Learning rate

4. Case study

The Normal Model
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Extra Hidden Units

e Developmental profile for 1HL network
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Changes to the Environment

Restricted pattern set (Poor)
Unbiased — no extra weight and balance problems (UB)
Developmental profile for 1HL network:

ES

i Anis

L L L
Rule | SDD Rule 1 ap Rule I Add Rule V

B

s 8

% consistent with rule

Increasing the number of layers can improve performance on the
restricted pattern set

Implementing delay

¢ Individual differences in developmental
disorders are sometimes characterised in
terms of delay —i.e Down’s syndrome

¢ Obvious way to implement de/ay is to reduce
the learning rate (Ir)

e Reduced Ir by 4 decrements
For example, [0.1: 0.08, 0.06,0.04, 0.02]

¢ How does Ir affect the transitions the system
exhibits?

Reducing the learning rate
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e Roughly parallel shifts for all metrics from left to right
¢ Development slows down
e Poorer behavioural discriminability

Delay and LR

o Developmental disorders. performance
asymptotes at lower level of complexity

¢ Models may “catch up” with extra
training

¢ LR not a good sole candidate for
explaining delay in disorders

Inter-individual variability

e Variability occurs during the development of
individual children

e Risk of averaging across individuals

¢ Development can also include regression to
less sophisticated rules




Case Study
¢ Single model run with 1HL (/r = 0.008)

80 epochs
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Conclusions

¢ Study of variability is important for both the
normative profile of development and
disorders

e Structure of the system and the environment
can affect the sequence of transitions made
during learning

¢ For the individual, progressive transitions and
regressions are important in model’s learning

End of Talk
Thank you for listening

Further Details

Simulation Details

¢ Epoch monitoring points:
[10, 20, 25, 30, 35, 40, 50, 60 70, 80, 90, 100]

e LRs: 1HL = 0.01 2HL =0.02 3HL =0.2

e Multi-layer simulations run with same Ir
— 3HL: 200 epochs (R4 at 140 epochs+)
— 4HL: 1000 epochs (R4 at 650 epochs+)

Case Study: Learning Profile
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