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Abstract We explore the use of Artificial Neural Networks 

(ANNs) as computational models capable of sharing, retaining 

and reusing knowledge when they are combined via 

Behavioural Genetic principles. In behavioural genetics, the 

performance and the variability in performance (in case of 

population studies) stems from structure (intrinsic factors or 

genes) and environment (training dataset). We simulate the 

effects of genetic influences via variations in the neuro-

computational parameters of the ANNs, and the effects of 

environmental influences via a filter applied to the training set. 

Our approach uses the twin method to disentangle genetic and 

environmental influences on performance, capturing transfer 

effects via changes to the heritability measure. Our model 

captures the wide range of variability exhibited by population 

members as they are trained on five different tasks. 

Preliminary experiments produced encouraging results as to 

the utility of this method. Results provide a foundation for 

future work in using a computational framework to capture 

population-level variability, optimising performance on 

multiple tasks, and establishing a relationship between 

selective pressure on cognitive skills and the change in the 

heritability of these skills across generations.   

Keywords—transfer learning, behavioural genetics, artificial 

neural networks, heritability, genetic algorithms 

I. INTRODUCTION  

Transfer learning is a research field in machine learning 
which aims to store and reprocess the knowledge gained 
while learning one task to learn different but related tasks 
[1]. This concept draws inspiration from the psychological 
notion of transfer, which explores how enhancement in one 
mental function could influence another related one. 
Machine learning methods that enable any kind of 
communication between different tasks are performing 
transfer. The task from which the knowledge is extracted is 
called the source task and the novel task to which it is 
applied is the target task. Literature in the field organises 
methods for performing transfer into two distinct types – 
functional and representational [2]. In functional transfer, 
learning in the source and target happens simultaneously and 
it exploits implicit pressures from additional training 
patterns, via shared or common internal representations. In 
representational transfer, source and target learning occurs 
separately in time and an explicit representation is 

transferred from the source to the target. It cares most about 
learning the target task only.    

Most methods of transfer learning implicitly assume that 
the source and target tasks are somehow related to each 
other - when, for example, the source task concerns training 
on female-only speech whilst the target task is to recognise 
speech from males only. In addition, most existing transfer 
learning algorithms assume that the feature spaces between 
the source and target domains are the same. However, in 
practice, it is useful to transfer knowledge across domains or 
tasks that have different feature spaces - the so-called 
heterogeneous transfer learning [1]. 

If the assumption about relatedness does not hold true, 
transferring knowledge might result in negative transfer. 
Negative transfer refers to the impairment of current 
learning and performance due to the application of non-
adaptive or unsuitable information. Estimating task 
relatedness and finding ways to avoid negative transfer pose 
a challenge which is attracting the attention of researchers in 
the field. Many methods have been reported to assess task 
relatedness. One commonly used framework to consider 
transfer is using artificial neural networks (ANNs). For 
ANNs, the most commonly used method to assess 
relatedness is the distance between weight space 
representations – the smaller the distance, the stronger the 
task relatedness. Another open question is which part of 
knowledge to share or transfer across tasks. For ANNs, most 
commonly used techniques involve the use of shared 
weights, common hidden layer, global learning rate and 
common training set [1][3][2][4]. Another important 
consideration is developing algorithms/methods capable of 
transferring this knowledge. Examples include Bayesian 
models, Hierarchical transfer methods, Relational transfer 
methods as described in [1][5] and references therein. 
Various attempts have been made to overcome the 
aforementioned challenges. Many are successful, albeit 
within their limited scope or case-specific applications. 
However, there is an increasing need for transfer learning 
techniques used for broader and more challenging 
applications. This in turn requires having more generalised 
methods that can be applied on any given set of tasks. 

In this work, we address the following key challenges: to 
perform heterogeneous transfer, avoid negative transfer, and 



propose a mechanism for determining task relatedness which 
extrapolates well to different domains and embodies the 
effects of both structure/intrinsic parameters and training 
datasets within which the learning system is placed. To this 
end, we propose a novel transfer approach to learn multiple 
heterogeneous tasks using concepts drawn from Behavioural 
Genetics [6][7]. Research in this multidisciplinary field 
shows that performance is highly dependent on both the 
genes and the environment. We draw an analogy between 
genes and intrinsic parameters, and the training dataset and 
the environment. Within Behavioural Genetics, it is well 
known that the quality of environment can modulate the 
influence of genetic variation. Following the analogy, one 
can similarly observe that training datasets affect the 
influence of intrinsic parameters. Thus, for ANNs, a certain 
number of hidden units may be highly beneficial for a 
specific condition of the dataset (say, for the number of 
training examples available) but if these conditions were to 
change drastically, the same number of hidden units may no 
longer be optimal. Thus, the system’s performance will alter. 

The proposed approach combines concepts of 
Behavioural Genetics with the idea of a parametrically 
diverse populations of learning systems, used in the context 
of a hybrid genetic algorithm, where genes (representing 
intrinsic factors) and environment (expressed via training 
datasets) interact throughout development to shape 
differences in individual classifier behaviours (performance). 
The method spans transfer learning systems and multi-task 
learning systems, incorporating “good/useful” features of 
both, and then combines them with principles of Behavioural 
Genetics. A comparative analysis of the differences between 
the proposed transfer approach and others closely related in 
the literature is presented in Table 1. 

The rest of the paper is organized as follows: in Section II 
we present the proposed behavioural genetics based 
approach and highlight some of the key aspects; in Section 
III we describe the methodology and its implementation.  
Section IV describes the experiments and presents the 
results. In Section V we discuss the results; and, finally, the 
paper ends with conclusions and future work in Section VI. 

II. BEHAVIOURAL GENETICS-BASED MODEL FOR 

LEARNING TRANSFER 

In this work, the effects of genetic influences are 
simulated via variations in the neuro-computational 
parameters of the ANNs. These parameters relate to how a 
network (an individual of the population) is built, its 
processing dynamics, how it is maintained, how it adapts and 
how it generates behavioural outputs. The effects of 
environmental influences are simulated via a filter applied to 
the training set. The filter creates a unique subsample of the 
training set for each simulated individual in the population, 
inspired by the notion of socio-economic-status (SES) in 
Behavioural Genetics [8][9]. Our approach uses a population 
of twins (ANNs with some degree of similarity in their 
neuro-computational parameters) to disentangle genetic and 
environmental influences on performance. The model 
captures the wide range of variability exhibited by 
population members as they are trained on and across 
different tasks. This approach is inspired by cognitive 
development, where twins are more closely matched for age, 
family and other social influences. This is because twins are 
either genetically identical (genetic relatedness of 1.0 for 
mono-zygotic, MZ, or identical twins) or as similar as 
siblings (genetic relatedness of 0.5 for di-zygotic, DZ, or 
fraternal twins) and, to an approximation, share the same 
environment (applicable for both MZ and DZ twins based on 
the Equal Environment assumption) [10]. The difference in 
the similarity in performance between MZ or DZ twin pairs, 
along with assumptions about their similarity of 
environment, allows inferences to be drawn about the 
influence of genetic relatedness on behaviour [11]. 

From a computational point of view, in particular we can 
exploit the notion of heritability within Behavioural Genetics 
to assess task relatedness. Heritability is a statistic that 
describes the effect size of genetic influence and refers to the 
proportion of observed or phenotypic variance that can be 
explained by genetic variance. In simpler terms, it is the 
amount of population variability explained by genetic 
similarity [11]. In computational terms, heritability can be 
interpreted as the amount of performance variation 
accounted for by structural similarity. Twin studies provide 
an exact computation of heritability. 

 Learning Goal Type of Transfer 
Degree of task 

relatedness  

Means of assessing task 

relatedness 
Special features 

Multi task 

Learning  

Improving 

performance in all 

tasks 

Functional 
Highly 
interrelated 

Case-specific 
relatedness measures  

Involves use of shared 

internal representations such 
as weights, common data sets 

for all tasks 

Transfer Learning  
Improving target 

task performance 
Representational 

Related but may 
be from different 

domains 

Application/case/domain 

specific measures only 
but cannot be applied 

per se on a generalised 

basis 

Highly application/case 

sensitive 

Behavioural 

Genetics based  

Improving 
performance in all 

tasks 

Hybrid: works sequentially like 

representational and uses 
common internal 

representations of intrinsic 

parameters,  like the functional 

Can be unrelated 

or heterogeneous  

Heritability and change 
in heritability, can be 

used in any scenario 

It is based on principles of 
Behavioural genetics; 

incorporates shared intrinsic 

parameters and effects of 
environment on performance 

(epigenetics) 

Table 1: Comparison between the proposed approach and other related approaches 

 

 



Additionally, twin studies provide a valuable tool for 
exploring environmental influences, especially family or 
shared environment, against a background of heritability. 
Since twins are genetically similar, if heritability affects 
behaviour then MZ twins will be more similar than the DZ 
twins. In other words, heritability (with twin studies) provides 
an estimate of the magnitude of genetic influence on 
behaviour [10].  

Heritability is an integral part of the current work for 
following reasons. As a population is bred and optimised 
across generations on a particular task, the range of variation 
of its suitable or relevant computational (or intrinsic) 
parameters reduces, i.e. optimisation leads to reduction in 
heritability. If the range of environmental variation is kept the 
same, the variation in performance will be more due to 
environmental variation, since the optimised population will 
now be more genetically homogeneous. Now, consider if the 
same population were trained on another non-related or 
heterogeneous task, and this also experienced a reduction in 
heritability. This would be an indication of the presence of 
some kind of relatedness among the tasks. The direction of the 
change in heritability indicates task relatedness. If the change 
in heritability for different tasks is in the same direction (e.g. 
all values decrease or all increase proportionally), this implies 
that the same set of intrinsic parameters are appropriate for 
learning the tasks. This in turn can help in identifying a set of 
domain-relevant parameters, which, like generalist genes [12], 
are useful for learning various heterogeneous tasks. Thus, 
change in heritability has the potential to act as a mechanism 
for identifying task relatedness, which extrapolates to different 
task domains, and consequently avoids negative transfer. 

 

III.  IMPLEMENTATION OF THE APPROACH 

The various steps involved in implementing our 
methodology are outlined below:  

 The first step is to identify n number of heterogeneous 
tasks. In our experiments below, n = 5. The five tasks 
were: English past tense, autoassociation, consistent 
categorisation, categorisation with exceptions, and 
arbitrary association. The tasks were chosen to vary 
with respect to their characteristics such as degree of 
similarity between the input and the output patterns, 
the presence of structure or regularity in mappings and 
the overall complexity. Thus, all five tasks pose 
different requirements to the ANNs.  

 For each of the five tasks there are two datasets: one is 
used for training and the other one is used for 
calculating the generalisation accuracy. For this 
instantiation of the framework, all training and 
generalisation/test datasets have 57 bit inputs and 62 
bit outputs representing different types of features from 
the five tasks. Table 2 provides the description of all 
tasks and their training datasets. The first task, English 
past tense formation, was included because the 
framework was first utilised as a psychological model 
of individual difference in language development [13]. 
Features of this task represent verb phonemes whilst, 

for example, features of the categorization task 
represent attributes of patterns belonging to 10 
categories. The same is applicable to categorisation 
with exceptions task also but with the exception that 
patterns belonging to category 9 whose Euclidean 
distance to the prototype pattern is less than 2 are 
assigned to category 7 instead. In case of auto 
association task, the patterns were 57 bit random 
vectors which were same for inputs and targets. In 
arbitrary mappings, the inputs and targets consisted of 
completely different 57 bit random patterns.   

 Choose any one task as the source task, and the 
remaining n-1 tasks become the target tasks. The aim is 
to successfully learn all tasks. 

 Encode the neuro-computational parameters of 
artificial neural networks in a genome. The parameters 
used in this work which are encoded within a fixed 
range include number of hidden units, learning rate, 
slope of logistic activation function, weight decay and 
nearest neighbour threshold. This stipulates the range 
of variation for all neuro-computational parameters. In 
this paper the range is chosen with the intent to help 
learn the source task better. Thus, each member of the 
population will have a different set of values, but 
within the same chosen range for the encoded 
parameters ensuring genetic diversity. 

 A population of 50 pairs of MZ twins and 50 pairs of 
DZ twins is created by simulating the biological 
processes of meiosis and fertilisation. In this work, as 
we progress with the generations, only offspring are 
included in the new generation populations.  

 In the current implementation, the environment is 
represented by training sets. Environmental variability    
is implemented as a filter applied to the training tasks, 
inspired by research on how SES affects cognitive 
development. A body of research suggests that 
individuals in lower SES families experience 
substantially less quality and quantity of information 
[8]. The filter creates a unique subsample of the 
training set for each simulated individual, based on a 
parameter determining the quality of the environment. 
An individual’s environmental quality is modeled by a 
number selected at random from the range 0.6-1.0. 
This gives a probability that any given pattern in the 
full training set would be included in that individual’s 
training set. This filter is applied at each generation to 
create unique training subsets for all members of the 
population in that generation. The range 0.6-1.0 
defines the range of variation of environmental quality, 
and ensures that all individuals are exposed to more 
than half of the training dataset. Due to the equal 
environment assumption, twin pairs have the same 
training subset. 

 The population of twins, twinpop1 and twinpop2 are 
then trained on the source task and independently on 
each of the target task.  



 Performance assessment and Heritability has two parts: 
calculating classification accuracies, including 
generalisation performance and measuring heritability 
and population variability. This step is done at the end 
of training for each generation. Performance is 
assessed using recognition accuracy based on 
Hamming distance. Heritability is measured at the end 
of each generation using Falconer’s equations [10] 

 Measuring heritability involves calculating MZ and DZ 
correlations. This is done by using the Pearson 
correlation formula   

ρx,y = cov(x,y)/σx σy  

where, x and y are performance vectors of pairs of 
MZ, or DZ, twins sampled from the twinpop1 and 
twinpop2 respectively, and σx denotes variance in x; 
σy  is the variance in y. 

 

Table 2: Heterogeneous tasks and dataset description.  

 

 The formula for computing heritability is 

h
2
 = 2 (r MZ – r DZ ) 

 where h
2 

represents additive genetic effect (or 
narrow sense heritability); r MZ is the MZ correlation 
and r DZ is the DZ correlation. 

 The proportion of variance due to shared 
environmental influences (filtered training sets) is 
calculated  

c
2
 = rMZ   - h

2
 

where c
2 

represents proportion of variance due to 
shared environmental influences; rMZ signifies MZ 
correlation and h

2 
is the heritability.  

 Lastly, the proportion of variance due to non-shared 
environmental influences (stochastic factors unique 
to each individual) is calculated as  

e
2  

= 1 -
 
rMZ 

where e
2 

embodies proportion of variance due to 
shared environmental influences and rMZ refers to 
MZ correlation. 

 Based on the performance of the population of 
networks on source task, members are selected from 
twinpop1 only for breeding the next generation. The 
selection criterion used is the standard roulette wheel 
selection which is applied at the end of training 
(1000 epochs).  

 This process is iterated until ANN parameters do not 
change any more significantly or performance starts 
converging, i.e. learning error in tasks reaches small 
value. 

 

IV. EXPERIMENTS AND RESULTS 

The results we report follow four generations that were 
increasingly optimised on the past-tense task. We trace the 
change in performance across generations on this task, and 

Tasks Input Bits Output Bits Description of data set  

Modelling performance of 6 

year old children on English 

Past Tense 

57 62 a) The training set consists of 508 English past tense verbs; each verb split in 3 

phonemes (19 bits each) 

b) Type frequency of verbs: 410 – regular, 20 – identical, 68 – vowel change, 02 –
arbitrary 

c) 8 arbitrary (non English) verbs for ensuring finer graduations of performance.  

d) Token frequency implemented by multiplying the corresponding bit with change in 

weight due to difference between actual and the target output. 

e) Separate test set consists of 500 novel verbs 

Auto association 57 62 a) Training set consists of 500 patterns and Target patterns same as input patterns 

b) ANNs produce 62-bit output vectors (62 output nodes) but the last 5 bits get zero 
values for all mappings. 

c) Separate test set consists of 500 novel patterns. 

Consistent Categorisation 57 62 a) Training set consists of 500 patterns belonging to 10 categories  

b) Each pattern is assigned a category based on its similarity to the prototype pattern 

of each category. 
c) Each pattern is created by altering each bit of corresponding prototype pattern with 

a probability of 0.05 

d) Test set consisting of 500 novel patterns using the same procedure used for test set. 

Categorisation with exceptions 57 62 a) Training set consists of 500 patterns where same input patterns as in previous 
categorisation data set are used. 

b) Slight modification in the mappings. Includes a sub cluster of exceptions. 

c) This sub cluster consists of all input patterns of category 9 whose Euclidean 
distance from prototype element of the category is less than 2. 

d) These patterns are assigned category 7, instead of 9. 

e) Test set consisting of 500 novel patterns using the same procedure used for test set. 

Arbitrary Association 57 62 a) Training set consists of 500 patterns ; targets are not same as the inputs 
b) No generalisation set since random inputs have random outputs. 



the change in heritability; but also, crucially, we report the 
same measures when each succeeding past-tense-optimised 
generation is instead trained on one of the other four tasks. 
We report the results from training 100 pairs of feed forward 
neural networks using batch version of RProp algorithm. The 
stopping condition was an error goal of 10

-5
 within 1000 

epochs. The reported results are for generations 1 to 4 (G1, 
G2, G3, G4) based on a population of 100 twin pairs, 
characterised as: Twinpop1, which is the population 
containing 1

st
 twin out of each twin pairs (100 networks) and 

Twinpop2, which is the population containing the remaining 
2

nd
 twin out of a twin pair (again 100 networks). There were 

508 patterns in English past tense training set and 500 
patterns in the training set for the remaining tasks. In 
addition, there was a separate test dataset consisting of 500 
novel patterns for each task in order to assess the 
generalisation performance of the networks. The networks 
were trained on the filtered training sets but the performance 
was always assessed on the full training set and then tested 
on the previously unseen generalisation set. Table 3 shows 
mean classification accuracy or the performance on full 
training set and Table 4 depicts the mean generalisation 
accuracy achieved by the population on each task across four 
generations. Heritability, effects of shared and non-shared 
environmental influences on each of the five tasks across 
four generations are shown in Table 5. Figure 2 contains the 
graphical representation of emerging heritability trends for 
all five tasks across the four generations. 

In order to compare our approach with classical transfer 

approaches and as a baseline to assess transfer effects 

against, we used the method suggested in [14] to train 

randomly initialized networks and networks initialized by 

the literal transfer method. The comparison experiments 

begin by initialising 10 networks, each with random initial 

weights. These are the source networks and are trained on 

the source task: English past tense for 1000 epochs using 

Rprop algorithm and different randomly generated values of 

hidden units [within the range: 50-500] and learning rate 

[within the range: 0.1-0.9]. Performance is assessed at the 

end of the training and the trained network’s weights are 

saved. The four remaining tasks become the target tasks. 

From each target task training dataset, 10 different 

90%/10% holdout conditions were generated. Networks 

were trained on the 90% partition and the generalisation 

ability was tested on previously unseen 10% partition of 

target task dataset. For each holdout, 10 different randomly 

initialised networks were used for target training. We first 

check the case of ‘random networks’. There are 10 

randomly initialised networks per target task data holdout, 

i.e. they start training with random initial weights. These are 

trained using Rprop algorithm for 1000 epochs. 

Performance is measured at the end of the training. The 

other technique is the ‘literal transfer’ wherein the literal 

weights from each one of the source networks were 

transferred. The other conditions were the same as those in 

the former case. Thus, there were 100 different training runs 

per holdout and per task. The essence of doing this 

comparison is that – if the results obtained by our proposed 

approach are influenced by the inherited parameters and 

training datasets rather than due to chance, one would not 

expect to see similar changes if these networks were run 

under these comparison conditions. 
 

V. DISCUSSION OF RESULTS 

 Our experiments demonstrate several key points. The 
range of neuro-computational parameters was calibrated with 
respect to the English past tense acquisition task, thus 
making it the main or source task. Tables 3 and 4 show that 
overall performance on the full training set and 
test/generalisation set is good for all five tasks. As expected, 
performance on English past tense consistently improved 
over generations. 

The performance drops drastically for association tasks in 
generation 2. The rationale behind this poor performance on 
the association tasks is that networks in generation 2 have 
genes (or intrinsic parameters) more suited to English past 
tense (since classification accuracy on that task was the 
selection metric). Whilst selecting members (from 
generation1) for breeding, the networks with genes more 
suited for English past tense task got selected and therefore 
the offspring or generation 2 networks automatically have 
better propensity towards these types of tasks. In addition, 
networks consider past tense, categorisation and 
categorisation with exceptions as belonging to similar 
domain (since they all classify patterns into one of the many 
classes). Hence, networks optimised on past tense perform 
well on the other related tasks too, because all three tasks 
pose same intrinsic requirements. On the other hand, the 
networks fare poorly on association tasks since the 
parameters being optimised (for past tense) are not suited for 
these tasks i.e. the learning mechanism considers that these 
tasks belong to non-related domain (as compared to the 
aforementioned three tasks). 

Table 5 shows the twin correlations, heritability values 
and the effects of shared and non-shared environmental 
influences on the variability in performance. As expected 
MZ correlations are very high and DZ correlations are low. 
The heritability values in some generations are very high - 
more than 1. Since heritability is defined as the proportion of 
population variability explained by genetic relatedness, its 
value cannot logically exceed 1. Technically, values greater 
than 1 occur when the genetic effects are so strong that they 
violate the additivity assumed by the Falconer model. 
However, for our purposes, it is still meaningful to use the 
metric to compare across conditions, since the computed 
heritability remains proportional to the greater performance 
similarity of MZ twins over DZ twins, and therefore the net 
effect of the genetically determined parameter sets on 
population variability. 

The heritability analysis from Figure 1 also illustrates the 
trend wherein: variations in heritability are in the same 
direction for the English past tense, the categorisation and 
the categorisation with exceptions tasks, which seem to form 
one group, and the auto and arbitrary associations as the 
other group. The direction of change in heritability values 
provides useful insight into assessing relatedness amongst 
tasks. If the direction of change is the same for different 
tasks, irrespective of whether it is positive or negative, it 
indicates that these tasks are related. 

A key advantage of using heritability as a metric of task 
relatedness is that it summarises the net effect of all 
computational parameters varying within the learning 
system. As the heritability statistic measures variation in the 
performance values, the method is robust to increases in the 
number of parameters that vary in the learning systems, and 
which underlie any transfer effect. 

 



  

 Min no of patterns (%) Max no of patterns (%) Mean (%) STD(%) 
 G1 G2 G3 G4 G1 G2 G3 G4 G1 G2 G3 G4 G1 G2 G3 G4 

English Past Tense [Source]                 

Twinpop1 1.1 35.2 40.9 9.4 88.5 88.5 89.5 88.1 77.1 77.4 78.5 81.2 14.1 11.3 10.0 14.3 

Twinpop2 3.7 37.4 44.2 23.2 89.1 88.3 89.5 87.9 77.9 77.6 78.6 82.1 12.8 11.1 10.0 10.9 

Auto association                 

Twinpop1 4.8 2.6 11.6 16.8 100 100 100 100 95.0 72.5 74.5 96.7 18.7 28.3 26.3 13.3 

Twinpop2 6.2 4.0 36.4 6.2 100 100 100 100 96.8 69.79 74.4 96.5 15.0 28.2 25.3 14.7 

Arbitrary association                 

Twinpop1 4.6 5.2 2 1.6 59.4 59.8 74 74 45.6 45.5 48.8 37.2 11.9 12.2 19.9 23.0 

Twinpop2 2.4 7.6 2.4 4.2 59.4 59.6 74.2 73.8 45.9 45.4 46.9 39.2 11.6 11.5 21.9 21.4 

Categorisation                 

Twinpop1 11.6 72.6 79.4 11.6 100 100 100 100 95.5 97.8 97.5 95.0 19.1 4.7 4.6 19.8 

Twinpop2 11.6 76.8 33 11.6 100 100 100 100 97.2 97.4 96.8 95.5 14.6 4.9 7.9 19.3 

Categorisation with Exp.                 

Twinpop1 84.8 61.4 78.4 11.6 99.4 99 99 98.6 95.9 95.6 95.8 92.8 3.5 5.6 4.3 20.3 

Twinpop2 86.8 68.8 39.8 11.6 99.6 99.2 99 99.4 95.7 95.3 95.6 93.7 3.4 5.5 6.7 18.9 

Table 3: Classification performance of twinpop1 and twinpop2 on full training sets for generations G1-G4. 

 Min (%) Max (%) Mean (%) STD(%) 

 G1 G2 G3 G4 G1 G2 G3 G4 G1 G2 G3 G4 G1 G2 G3 G4 

English Past 

Tense[Main Task] 

                

Twinpop1 3.0 28.9 27.7 12.2 91.3 90.9 89.3 94.8 67.72 70.97 70.96 82.78 18.75 15.58 14.52 15.65 

Twinpop2 8.6 23.2 27.9 6.6 92.1 94.2 90.7 93.8 69.65 70.36 70.66 83.11 16.17 15.65 15.11 13.75 

Auto association                 

Twinpop1 2.8 2.4 2.2 4.4 100 100 100 100 94.53 80.06 73.01 95.76 19.99 32.01 37.28 17.12 

Twinpop2 2.4 3.0 2.0 4.8 100 100 100 100 97.13 78.77 73.58 96.75 14.45 32.62 36.73 14.44 

Arbitrary 

association 

* * * * * * * * * * * * * * * * 

Categorisation                 

Twinpop1 9.4 65.4 65.2 9.4 100 100 100 100 95.43 96.15 95.39 94.85 19.70 7.71 8.36 20.55 

Twinpop2 9.4 65.0 29.0 9.4 100 100 100 100 97.07 95.57 94.88 95.46 15.27 8.32 10.26 19.84 

Categorisation 

with exceptions 

                

Twinpop1 66.0 58.8 64.8 9.4 100 100 100 100 90.58 94.80 94.18 94.22 9.00 9.04 7.87 21.36 

Twinpop2 70.4 62.6 32.6 9.4 100 100 100 100 90.61 94.08 93.80 95.17 8.47 9.18 9.76 19.66 

Table 4: Generalisation performance of twinpop1 and twinpop2 after each generation G1-G4 in each one of the task. Asterisk, *, indicates that no test set was used 

since random inputs produce random outputs. 

 

 English P.T. Auto-

association 

Arbitrary 

mappings 

Categorisation 

Task 

Categorisation 

with Exceptions 

Generations 

MZ correlation 0.96 0.91 0.63 0.99 0.86 G1 

0.96 0.99 0.99 0.92 0.91 G2 

0.95 0.99 0.99 0.9 0.90 G3 

0.96 0.99 0.99 1.00 0.99 G4 

DZ correlation -0.08 0.21 0.57 -0.029 -0.21 G1 

0.69 0.49 0.43 0.59 0.72 G2 

0.11 0.29 -0.002 0.24 0.28 G3 

0.61 0.36 0.39 0.61 0.56 G4 

Heritability,  
h2   = 2 * (rMZ – 

rDZ) 

2.11 1.39 0.11 2.05 2.15 G1 

0.54 1.01 1.11 0.65 0.38 G2 

1.67 1.40 2.00 1.46 1.28 G3 

0.69 1.26 1.19 0.77 0.87 G4 

Shared 

environmental 

effects 
c2 =  rMZ - h2   

-1.14 -0.48 0.52 -1.05 -1.29 G1 

0.41 -0.01 -0.12 0.26 0.52 G2 

-0.72 -0.40 -1.00 -0.48 -0.32 G3 

0.26 -0.26 -0.19 0.22 0.12 G4 

Non-shared 

environmental 
effects 

e2 = 1 – rMZ 

0.03 0.08 0.36 0.0008 0.13 G1 

0.03 0.002 0.002 0.076 0.08 G2 

0.04 0.002 8.00e-04 0.022 0.09 G3 

0.03 0.004 0.005 0 0.0002 G4 

Table 5: Values for Heritability, shared and non-shared environmental influences for each task across the four generations. 

 



 

Networks Performance (%) 

N1 61.02 

N2 66.54 

N3 75.79 

N4 85.83 

N5 81.89 

N6 79.53 

N7 63.98 

N8 79.72 

N9 64.57 

N10 80.70 
 

Figure 1: Heritability variation across generation. Table 6: Average performance per holdout in the source for random 

networks 

  

Figure 2: Average performance in Training for random networks Figure 3: Average performance in testing for random networks 

 

  

Figure 4: Average performance in training for literal networks Figure 5: Average performance in testing for literal networks 

  

Even though two distinct categories/clusters emerge, the 

performance improves for all 5 tasks. Shared knowledge 

(genome + filtered training set) thus helps all tasks, i.e. it acts 

in a domain relevant capacity. 

 Table 6 and Figures 2-5 depict the performance of the 

source and target tasks’ on comparative approaches 

respectively. For the target task graphs, the average of all 10 

networks per holdout was calculated and used. These graphs 

show that the average performance in training for randomly 

initialised networks is good on all tasks. However, when 

assessing the generalising capability of these networks, the 

performance on auto association and arbitrary mappings falls 

to zero, indicating that the networks are not capable of  

 

generalising these tasks at all. Even the generalisation 

performance of categorisation and categorisation with 

exceptions is not as good as the results achieved via our 

proposed approach. 

When applying the literal transfer technique, the 

performance of auto association and arbitrary mappings falls 

compared to the randomly initialised networks; whereas the 

training performance on categorisation and categorisation with 

exceptions is very good. The generalisation capability is not 

very impressive in case of categorisation and categorisation 

with exceptions but it is non-existent in case of other two 

tasks. This further strengthens our conclusion that the English 

past tense, categorisation and categorisation with exceptions 



are closely related to each other whereas auto and arbitrary 

associations are closely related to each other. Moreover, 

heritability can potentially play a useful role as an indicator of 

task relatedness. Lastly, the approach proposed in this paper 

always results in good generalisation performance in all tasks 

and the average performance on all tasks keeps improving 

with generations. This clearly indicates that the results 

obtained using our proposed approach are due to the 

cumulative effects of intrinsic parameters and training datasets 

rather than chance. 

 

VI. CONCLUSION 

 

Transfer learning approaches face four main challenges: to 

successfully perform transfer in case of heterogeneous tasks; 

the lack of a generalised mechanism of determining task 

relatedness; avoiding negative transfer; and to imitate more 

closely learning as it happens in human beings – taking into 

account both structure and environment where the system is 

placed. In this work, we proposed a behavioural genetics 

based transfer approach. We simulated population studies, 

using artificial neural networks as computational models 

capable of learning various heterogeneous tasks, i.e. tasks with 

different features. Our work addressed these four open 

questions. 

The proposed approach enabled a population of ANNs to 

learn five tasks which vary with respect to their characteristics 

such as features, degree of similarity between input-output 

patterns, the presence of structure or regularity in mappings 

and overall complexity. We simulated the effects of genetic 

influences via variations in the neuro-computational 

parameters of the ANNs and the effects of environmental 

influences via a filter applied to the training set based on 

socio-economic-status values. Focusing on heritability, we 

showed how the direction of change in heritability can be used 

as an indicator of task relatedness. The experimental results 

denote that if the change in heritability for different tasks 

move in the same direction, this implies that same set of 

intrinsic parameters are required for learning and thus transfer 

within those tasks would be successful.  

We reported performance results for all five tasks over four 

generations. They illustrate that using the outlined method 

heterogeneous tasks were learned successfully; with good 

performance in all cases and compared our approach with 

random networks and literal transfer. The model also captured 

the emerging relatedness amongst tasks with English past 

tense, categorisation and categorisation with exceptions 

belonging to one group of related tasks, and auto association 

and arbitrary associations belonging to another group of 

related problems. Despite distinctions emerging with respect 

to relatedness amongst tasks, shared knowledge (genome and 

filtered training set) helps learning in all cases. These results 

are of course only preliminary. More in depth experimentation 

and analysis are required to establish long-term trends and 

emerging behaviour as the populations evolve. 
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