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Evolving Connectionist Models to Capture Population 

Variability Across Language Development: Modelling 

Children’s Past Tense Formation 

Abstract 

Children’s acquisition of English past tense has been widely studied as testing 

ground for theories of language development, mostly because it comprises a set 

of quasi-regular mappings. English verbs are of two types: regular verbs, which 

form their past tense based on a productive rule, and irregular verbs, which 

form their past tenses through exceptions to that rule. Although many 

connectionist models exist for capturing language development, very few 

consider individual differences. In this paper, we explore the use of populations 

of artificial neural networks (ANNs) that evolve according to Behavioural 

Genetics principles in order to create computational models capable of 

capturing the population variability exhibited by children in acquiring English 

past tense verbs. Literature in the field of Behavioural Genetics views 

variability in children’s learning in terms of genetic and environmental 

influences. In our model, the effects of genetic influences are simulated through 

variations in the neuro-computational properties of ANNs, and the effects of 

environmental influences are simulated via a filter applied to the training set. 

This filter alters the quality of information available to the artificial learning 

system and creates a unique subsample of the training set for each simulated 

individual. Our approach uses a population of twins to disentangle genetic and 

environmental influences on past tense performance and to capture the wide 

range of variability exhibited by children as they learn English past tenses. We 

use a novel technique to create the population of artificial neural network twins 

based on the biological processes of meiosis and fertilization. This approach 

allows modelling both individual differences and development (within the 

lifespan of an individual) in a single framework. Finally, our approach permits 

the application of Selection on developmental performance on the quasi-regular 

task across generations. This is an important aspect that distinguishes our work 

from others reported in literature, setting individual differences within an 

evolutionary framework. We present an experimental evaluation of this model 

focusing on individual differences in performance. The experiments led to some 

interesting findings such as: applying selection on the individual’s performance 

level in a quasi-regular task such as past tense acquisition results in the 

emergence of divergent behaviours depending on initial conditions – both 

genetic and environmental; once selection starts targeting a particular aspect of 

task domain, it starts behaving similar to Waddington’s epigenetic landscape; 

and selection based on a stochastic method such as roulette-wheel, when 

combined with sexual reproduction method for population generation, has a 

limiting effect on final behavioural (or performance) levels achieved. The 

findings validate the effectiveness of the method within an evolutionary setting 

and provide the basis for future work to capture population-level differences 

within a developmental setting.  
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1. Introduction 

 
In artificial life systems, interactions between evolution and learning have attracted 

considerable attention in the literature, and several computational models have been proposed 

to investigate the way evolution affects learning. In this work, we focus on language learning, 

an area where computational models have made several contributions towards a better 

understanding of language development and evolution [13, 23, 39]. 

 
Language learning is considered one of the most complex tasks. Nevertheless, most children 

acquire it naturally, effortlessly, and quickly compared to other areas of cognitive 

development. Language is like the majority of complex systems which exist in nature and 

which empirically exhibit hierarchical structure [38].  

 

Two opposing theories of language acquisition dominate the linguistic and psycholinguistic 

communities (refer to [49] for a review). The nativist approach, proposed by Chomsky [4, 5], 

and promoted by Pinker, claims that the linguistic capability at least with respect to grammar 

is innate; therefore, certain linguistic universals are given to the language learners for free; 

only the established parameters need little tweaking in order for language to be fully acquired 

[25]. 

 

The second view is the emergentist approach. It asserts that language emerges as a result of 

various challenging constraints, which are all consistent with other general cognitive abilities. 

No dedicated provisions for universal grammar are required. According to this view, the 

complexity of language emerges from the exposure of relatively simple developmental 

processes to a massive and complex environment [20, 21]. 

 

Computational models provide an insight into language acquisition processes and the nativist 

versus emergentist debate. Artificial neural networks or connectionist networks offer an 

intuitive framework in which empirical phenomena in language acquisition can be explained 

by virtue of interactions between a language-learning system that incorporates general 

properties of computations in the brain and statistical properties of the linguistic environment 

to which it has been exposed [15]. Computational models have been extensively applied to 

investigate the mechanisms of language development, including simulating early 

phonological development, lexical segmentation, vocabulary development, the acquisition of 

pronouns, the development of inflectional morphology, syntax comprehension, syntax 

production, metaphor comprehension, and reading [45]; (for reviews, see [3]; [22]). 

 
One particular focus of research has been the field of inflectional morphology, which 

considers the alteration of the phonological forms of words to change their meaning (such as 

tense for verbs and plurals for nouns). Within this field, the acquisition of English past tense 

has drawn a great deal of attention, under the assumption that it taps the main cognitive 

processes involved in the acquisition and use of morphological knowledge [15]. Children’s 

acquisition of English past tense has been the focus of great deal of empirical research, 

mostly due to its quasi-regular mappings [45]. Quasi-regular domains are interesting because 

of the presence of systematic input-output mappings but the presence of a minority of 

exceptions [45].  

 

The majority of English verbs, viz. regular, form their past tense by following a rule for stem 

suffixation, also referred to as +ed rule. This rule allows for three possible phonological 

suffixes [14] - /d/ e.g. raise – raised; /t/ e.g. clap – clapped; /ed/ e.g. visit – visited. However, 
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there are around 200 irregular verbs that form their past tenses by exceptions to the 

aforementioned rule, e.g. go – went; eat – ate; ring – rang, hit – hit. Although irregular verbs 

do not follow the productive rule, there are some irregular verbs that share characteristics of 

the regular verbs. For instance, many irregular verbs have regular endings, /d/ or /t/ but with 

either a reduction of the vowel, e.g. say – said; do – did, or the deletion of a stem consonant, 

e.g., has – had; make – made [19]. This overlap between regular and irregular verbs adds to 

the complexity of task domain. (See the mapping between written and spoken forms of 

English for another example of a quasi-regular domain within language, [28]). 

 

Due to this dual and fuzzy nature, there is an ongoing debate in the field of language 

development about the processing structures necessary to acquire the domain. (Refer to [42] 

for a review). Is it necessary for the system to contain a prior processing assumption that the 

domain includes a productive rule, requiring symbolic computational structures? Or can 

productivity emerge from associative mechanisms exposure to quasi-regular domains? 

 

There are two main theories. The first is a dual route account, proposed by Pinker [24], 

according to which two separate mechanisms are involved in learning the mappings: a rule-

based system for learning regular mappings, and a rote-memory system, which supports the 

irregular mappings. Rumelhart and McClelland [37] challenged this dual-mode model by 

proposing a model based on the principles of parallel distributed processing. Their alternative 

model demonstrated that a two-layered feed-forward neural network can learn mappings 

between phonological representations of verbs and their corresponding past tense forms. Both 

regular and irregular, as well as demonstrating productivity of the rule to novel verbs. This 

model, though extremely influential, had several drawbacks (refer to [14], for details).  

 

This Backpropagation algorithm-based model inspired many subsequent connectionist 

models of acquisition of inflections like [7, 9, 34, 35] to name a few. Subsequent 

connectionist models addressed many of the drawbacks of the initial model. For example, 

Plunkett and Marchman [35] took the main idea from Rumelhart model and modified it into a 

three-layered feed-forward architecture with more realistic phonological representations.  

 

The line of research inspired by Rumelhart and McClelland employed artificial neural 

networks to simulate a wide range of past tense acquisition related phenomena. However, the 

majority of this work was concerned with capturing the developmental profile of the average 

child. Recently artificial neural network models have been extended to explore causal factors 

of atypical development, for example, in the cases of Specific Language Impairment and 

Williams syndrome [16]. To our knowledge, very little work has been concerned with 

capturing the wide range of variability that typically developing children exhibit in acquiring 

this aspect of language. Thomas, Forrester and Ronald [45] modelled the effects of socio-

economic status (SES) on language development, combining development and individual 

differences in a single framework. The key innovation of this model was that it addressed 

individual differences arising from variations in SES of the families in which children are 

raised, simulated as modulation of the structured learning environment, against a background 

of variation in the computational power of individual’s learning systems. 

 

Recently, two innovations in this line of research have raised interesting questions of 

relevance to research in artificial life and evolutionary computation. The first innovation is 

the application of past tense modelling to individual differences between children with 

respect to their origin in genetic and environmental factors. For example, to some extent 

language delay runs in families, implying a heritable component, while differences in SES, a 
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proxy measure of the quality of the environment, also explain some of the variance in 

language development [45]. The second innovation is the use of multi-scale modelling to 

reconcile data from multiple levels of description, including genetic, neural structure, 

cognitive processes, behaviour, and the environment, where behaviour itself is captured as 

the outcome of an extended development process involving interaction with a structured 

learning environment. This framework, using past tense as an illustrative cognitive domain, 

has for example explored the relationship of statistical gene-behaviour associations (as 

reported in Genome Wide Association Studies) to developmental mechanisms. The 

specification of a genetic level in the model allows simulation of identical and fraternal twins, 

thereby simulating the kinds of twin study designs used to assess the heritability of high-level 

behaviour [46].  

 

In artificial life research, Genetic algorithms are usually employed for optimisation, where 

selection across generations aims to improve the performance of learning systems on a target 

task. By contrast, the existing multi-scale models took the presence of genetic variation as a 

starting point. This raises the following questions: where does the existing genetic variation 

in populations come from? How does this variation respond to the operation of selection? 

How do measures of heritability alter across generation through the operation of selection? 

What are the implications of using a quasi-regular domain as the target problem for 

optimisation? What parts of the problem domain are optimised across generations and what 

factors determine this?  

 

To address these questions, in this work, we build on our previous investigation that 

combined concepts of Behavioural Genetics with the idea of parametrically diverse 

populations of learning systems, where genes (representing intrinsic factors) and environment 

(expressed via training datasets) interact throughout development to shape differences in 

individual classifier behaviours [18]. We extend the framework to an evolutionary context by 

introducing selection in the populations’ optimisation process across generations, focusing on 

learning a particular task: English past tense. The use of selection on performance in a quasi-

regular task and the resulting findings make our English past tense acquisition model novel 

and different from others proposed in literature. In this context, we present our synergistic 

approach to capture population variability stemming from genetic and environmental 

influences and to analyse effects of selection on behavioural outcomes.  

 

This approach not only captures the heterogeneity observed in acquiring a new ability but 

also helps in understanding how the quality of environment interacts with intrinsic 

constraints, leading to an individual’s overt behaviour. It shows, for example, the different 

behaviours emerging due to interaction of quality of training set with good (or poor) learning 

rate (i.e., ability to learn, similar to neuroplasticity) and good (or poor) numbers of hidden 

units (i.e., capacity to learn, somewhat similar to neurogenesis). It also highlights how 

applying selection results in changes in overt behaviour across generations. 

 

In Behavioural Genetics, factors affecting language development are attributed to genetic and 

environmental influences [33]. To model genetic influences, we encode the variation in 

neuro-computational parameters of ANNs, thereby modulating their learning efficiency. 

These parameters relate to how a network (individual) is built (the number of hidden units), 

its processing dynamics (slope of logistic function within processing units), and how it adapts 

(learning rate). The effects of environmental influences are simulated via a filter applied to 

the training set. This filter alters the quality of information available to the learning system. 

One factor identified to correlate with variations in language and cognitive development is 
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SES, in terms of parent income and education levels. Although this measure is a proxy for the 

potentially multiple causal pathways by which environmental variation influences 

development, one line of evidence supports the view that SES modulates levels of cognitive 

stimulation: children in lower SES families experience substantially less language input and 

also a narrower variety of words and sentence structure [45]. When implemented as a filter, 

the result is the creation of a unique subsample of the training set for each simulated 

individual based on their SES. 

 

Although intrinsic and extrinsic parameters vary independently in this formulation, gene-

environment interactions can occur. According to principles of Behavioural Genetics, both 

genes (intrinsic factors) and environment (training datasets) interact throughout development 

to shape differences in individual behaviours (performance) [32]. Here, connectionist 

networks contain a range of parameters that can increase or decrease the ability and/or 

capacity of the network to acquire a new ability but the structure, or the quality, of the 

environment affects the way these intrinsic parameters behave. For example, within a 

modelling context, a certain number of ANN hidden units may be highly beneficial for a 

specific condition of the environment (say number of training examples available) but if these 

conditions were to change drastically (say, a large expansion of the training set), the same 

number of hidden units may not be able to accommodate the change. Thus, the system’s 

performance will alter. 

 

Apart from having genetic and environmental variation, our model also incorporates 

“selection” and its effects. As is shown later in the paper, applying selection on performance 

on the English past tense problem leads to two novel findings: (i) selection targets different 

aspects of a quasi-regular task depending on different initial conditions, potentially producing 

divergent populations. This in turn results in emergence of different and varied behavioural 

(performance) patterns, while still optimising on the target task; (ii) the amount of 

performance variation explained by genetic similarity, the so-called heritability metric [33] 

plays an important role in identifying which aspect of this quasi-regular task is being targeted 

by selection. 

 

The rest of the paper is organised as follows. First, we give an overview of the proposed 

hybrid computational model, combining neural networks and evolution, and its inspiration in 

Behavioural Genetics. We then explain the methodology for the implementation of the model 

and the past tense dataset used in the simulations. Finally, we present the results and discuss 

their implication. 

 

 

2. Behavioural Genetics Inspired Hybrid Computational Model 

 

Behavioural Genetics is a field of study that examines the role of genetics in individual 

differences in human behaviour. Behaviour is the most complex phenotype as it reflects the 

functioning of the complete organism; it is dynamic and changes in response to the 

environment [30]. This field is concerned with the study of individual differences, i.e. 

knowing what factors make individuals within a group differ from one another. It also 

estimates the importance of genetic and environmental factors that cause individual 

differences. Thus, the behaviour or phenotype is the result of genetic factors together with 

environmental factors. 
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In Behavioural Genetics, twin studies are widely employed to untangle genetic and 

environment effects on behaviour. Twins are matched for age, family and other social 

influences. They are either genetically identical (genetic relatedness of 1.0 for monozygotic, 

MZ, or identical twins) or as similar as siblings (genetic relatedness of 0.5 for dizygotic, DZ, 

or fraternal twins) and, to an approximation, share the same environment (applicable for both 

MZ and DZ twins based on the Equal Environments Assumption) [32]. The difference in the 

similarity in performance between MZ or DZ twin pairs, along with assumptions about their 

similarity of environment, allows inferences to be drawn about the influence of genetic 

relatedness on behaviour [31].  

 

Environmental influences are defined as being of two types, shared (or between-family) and 

non-shared (or unique and within-family). Shared, or between-family, environmental 

influences are those which are shared amongst family members and serve to make members 

of a family (in this case, twins) similar to each other and different from members of other 

families. Shared environmental influences often tend to include family structure, 

socioeconomic status, and parental education to name a few [29]. By contrast, non-shared, or 

within-family, environmental influences are factors that are not common amongst family 

members, serving to make individuals different from one another. These environmental 

influences often do not operate on a family-by-family basis but rather on an individual-by-

individual basis. Examples include peer groups, perinatal traumas, and parental treatment [29, 

32]. 

 

Our work exploits the notion of a “population of twins”, i.e. ANNs with some degree of 

similarity in their neuro-computational parameters, to simulate and thereby investigate the 

process of disentangling genetic and environmental influences on performance.  

 

Within the field of Behavioural Genetics “heritability” is a central concept, and it is also an 

important aspect of the current work. The Heritability statistic is defined as the proportion of 

observed or phenotypic variance that can be explained by genetic variance. In simpler terms, 

heritability is the amount of population variability explained by genetic similarity [33]. There 

has been increasing acceptance that in humans, many high-level behaviours show marked 

heritability [33], a finding that would have been surprising to many researchers in the latter 

part of the 20
th

 Century.   

 

In computational terms, heritability can be interpreted as the amount of performance variation 

accounted for by structural similarity. Additionally, twin studies provide a valuable tool for 

exploring environmental influences, especially family or shared environment, against a 

background of heritability.  

 

To measure heritability and the proportions of variance explained by shared and non-shared 

environments, we use a technique based on Falconer’s equations [10] as described in [18]. 

Linear algebra is used to derive estimates of heritability. Broadly, since DZ twins are half as 

genetically similar (on average) as MZ twins, the difference in the correlation between MZ 

and DZ twins shows about half the genetic influence on behaviour; doubling the difference in 

correlations between MZ and DZ twins gives an estimate of heritability. 

 

Our base model, prior to implementing sources of variation and the use of twins, was inspired 

by that proposed by Plunkett and Marchman [34]. They suggested that both the regular and 

the exception verbs could be acquired by an otherwise undifferentiated three-layer 

Backpropagation network, trained to associate representations of the phonological form of 
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each verb stem to a similar representation of its past tense. This became our base model; we 

introduced the sources of variations, relying on the Rprop algorithm [36] for training; and 

then introduced selection across generations of twin pairs. 

 

Simulating variations due to genetic influences: Artificial neural networks depend on a 

range of parameters that increase or decrease their ability to acquire a new task. In the current 

instantiation, our approach employed three free parameters, or genes, to constrain the 

learning abilities of ANNs. The first two parameters, number of hidden units and the learning 

rate (or the initial learning rate of Rprop) have been used in almost all applications involving 

ANNs. These are formational parameters, since the former corresponds to how the network is 

built and thus relates to a network’s capacity to learn, whereas the latter governs how 

networks adapt and hence provides a network with the ability to learn. These parameters 

would thus be influential in distinguishing between fast and slow learners. 

 

We also used another parameter, the slope, or steepness, of the logistic threshold function 

within the artificial neurons. This corresponds to the activation dynamics acting within each 

network. Modulation of this parameter leads to steeper or shallower slopes in the threshold 

function. A shallow slope negates the opportunity of a processing unit to make large output 

changes in response to small changes in input; a steep slope ultimately leads to very sensitive 

but binary response characteristics subject to entrenchment effects. Therefore, too shallow or 

too steep values of this parameter will hinder the learning process [26, 43]. 

 

In order to constrain learning, these properties were encoded into a genome. The genome was 

the measure of the base composition of an individual. In other words, it served as a set of 

instructions about how to form an organism of a particular species or group. Encoding 

parameters in the genome allowed the individuals in a population to have a different 

genotype, that is, different values of each of the free parameters but from within the same 

fixed range. It thus led to variability in a population by giving each network a different 

ability/capacity to learn new tasks. 

 

Simulating variations due to environmental influences: Variations in shared environmental 

influences were simulated through variations in the Environmental Factor (EF), in this case 

SES of the families in which children are raised. SES effects can be implemented in three 

main ways: by manipulating the quality and quantity of the information available, by altering 

the motivation of the learner to utilise the available information through differences in reward 

and punishment schedules, or by manipulating the computational properties of learning 

systems (as, for instance, differences in stress levels or diet might influence brain processes in 

children) [45]. 

 

For this work, we focus on EF as a manipulation of the quality and quantity of information 

available to the learners. We assumed that, in principle, there is a perfect environment, or full 

training set, available to any learner. This comprised all of the verbs available in the language 

and their accepted past tense forms. We then modelled an individual’s EF by a number 

selected at random from the range 0.6–1.0. This gives a probability that any given verb in the 

full training set would be included in that individual’s training set. The range 0.6-1.0 defines 

the range of variation of EF, and ensures that all individuals are exposed to more than half of 

the past tense domain. Twin pairs raised in the same family were exposed to the same 

training set, such that EF would lead to effects of shared environment. The variance in 

performance that cannot be inferred from shared environment is representative of effects of 
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unique or non-shared environmental influences. Here, it included any measurement error, as 

well as stochastic factors such as the initial weights of ANNs. 

 

The learning speed and fast convergence of many feed forward neural networks depend to 

some extent on their initial values of weights and biases [41, 50]. For this reason, in our 

approach, initial values of weights were one way to capture unique environments. The 

initialisation method used in this work is similar to that proposed by [2] and uses the interval: 

[−
𝑎

√𝑑𝑖𝑛
, +

𝑎

√𝑑𝑖𝑛
]; wherein 𝑎 is chosen in a way that weight variance corresponds to the points 

of maximum curvature of activation function. This value is 2.38 for standard sigmoid 

function [41]; and din is fan-in of neuron or the total number of inputs of a neuron in the 

network. 
 

3. Model Implementation Methodology to Capture Individual Differences 

 

Using the concepts explained in the previous sections, we built a model to learn English past 

tenses and also captured the individual differences in performance. The starting point of this 

work was to estimate the proportion of variance attributed by variances in structural 

parameters (genes), training set (shared environment), and initial weights (non-shared 

environment). The methodology adopted can be summarised as follows:  

 

Design ANNs: the first step was to design ANNs incorporating neuro-computational 

parameters that constrained their ability to learn. We selected three free parameters, each of 

which corresponded to how the network is built: number of hidden units; its activation 

dynamics, i.e. slope of logistic function; and how it adapts, i.e. learning rate, or the initial 

learning rate of Rprop. 

 

Calibrate range of variation: in the second step, the range of variation of each of these 

parameters was calibrated to avoid the presence of genes in the population that produced 

networks with no learning ability. To this end, we began with random values for all 

parameters and trained 100 neural networks for 1000 epochs while varying the values, in 

steps of 5 for hidden units and 0.01 otherwise, for each of these parameters individually. The 

calibration process was carried out for all parameters, until values were identified beyond 

which the learning failed, as well as the values which resulted in successful learning. This 

method provided a range of parameter values from poor up to very good performance. These 

values were then encoded in the artificial genome. Encoding the parameters within a fixed 

range allowed variation in the genome between members of population, which then produced 

variations in computational properties. The range of variation of the parameter values served 

as the upper and the lower bound used for converting the genotype (encoded values) into its 

corresponding phenotype (real values). For the encoding, we used binary representation, 

whereby each gene had two variants or alleles, with 10 bits per parameter, split into two 

chromosomes. The parameters and their range of variation are given in Table 1. 

 
Parameters Range of variation 

No of hidden units 10 - 500 

Learning rate 0.07 - 0.1 

Slope of logistic 0.0625 - 4.0 

Table 1: Genome representing ANN parameters and their ranges 

 

Breed the population: the next step concerned breeding the population of ANN twins using 

the genome. We simulated the biological processes of meiosis and fertilisation to create 50 
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pairs of MZ and 50 pairs of DZ twins. This method was chosen because it is the closest 

simulation of actual biological processes (refer to [6] for details about biological meiosis and 

fertilisation). 

 

We began this process by creating a population of n members with random binary genomes. 

These n members were then split into two groups of size n/2, representing fathers and 

mothers. Next, the genome of each of these individuals was split into two equal halves, 

resulting in two chromosomes per individual. Each chromosome contained half the 

information to code for each parameter. Then crossover was applied multiple times, say m 

times on these chromosomes. Each crossover results in two sperms or eggs. Now these 

sperms and eggs need to be combined to get the desired offspring. To do this positional 

recombination was used to combine the sperms and eggs, such that for each parameter, half 

the encoded information came from sperm and other half from egg. Thus, every crossover 

and fertilisation led to 2 offspring and resulting in total 2m possible offspring. The genotypes 

of these resulting offspring were converted to phenotype using the parameters values given in 

Table1. 

 

Although in biology, meiosis creates two sperm/two eggs from the crossover operation, the 

likelihood of both of the pair ending up in organisms is very small. If this happened, the mean 

genetic similarity of the population would start to be affected. We therefore only selected one 

of the pair of sperm/eggs generated by the crossover to generate offspring, while the other 

was discarded. 

 

To verify the genetic similarity between twin pairs, we used the Hamming distance metric to 

assess the similarity amongst offspring. Let us assume that 2m = 6, and crossover is applied 

three times, leading to: xover1 results in offspring (o1, o2); xover2 results in (o3, o4) and 

xover3 leads to offspring (o5, o6). First, we randomly pick any one offspring out of the 

possible six; let us assume that is o1. Because of the reasons explained above, we discard 

o1’s corresponding offspring, o2. Next, the similarity of o1 is checked with the remaining 

four offspring using the Hamming distance formula. The offspring that is at most fifty 

percent similar is chosen as o1’s corresponding DZ twin, assume o4. This implies that (o1, 

o4) form a pair of DZ twins. Subsequent to o4’s selection, its corresponding twin from 

crossover, o3 is discarded. Now, out of the remaining two twins, any one is chosen randomly 

and replicated, and they comprise the MZ twin pair.   

 

This process was repeated until we achieved the desired population size. When simulating 

multiple generations, the internal similarity of the gene pool should not be increased by 

inbreeding. In other words, if related individuals were to breed with each other, the average 

similarity between individuals would increase over the generations. For this reason, we 

separated twin pairs into breeding and non-breeding populations, and only bred from the 

breeding twin of each pair, while the non-breeding twin was available to compute heritability. 

Breeding therefore always took place between unrelated individuals, preserving the mean 

genetic similarity within populations across generations. 

 

Apply variation in the environment: an individual’s EF was modelled by a randomly chosen 

number between 0.6-1.0. This gave a probability that any given pattern in the full training set 

was included in that individual’s training set. This filter was applied at each generation to 

create unique training subsets for all members of the population in that generation. The range 

0.6-1.0 defined the range of variation of environmental quality, and ensures that all 

individuals were exposed to more than half of the training dataset. In accord with the Equal 
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Environments Assumption [32], twin pairs raised in the same family were assigned the same 

training subset. 

 

ANN training and performance assessment: the population of twin ANNs was trained on the 

past tense dataset using the Rprop algorithm. The performance was assessed on the full 

training set, as well as on another novel dataset that was created to test the generalisation 

ability of the networks (see below). The continuous outputs produced by networks were 

converted to binary by applying threshold. Then the performance was assessed using 

recognition accuracy based on Hamming distance as explained in [17]. 

 

Selection: based on the performance of the networks on the full training set, members were 

selected from the breeding population to produce offspring to populate the next generation. 

To this end, a stochastic selection metric, the standard roulette wheel, was applied at the end 

of training (1000 epochs). An important and novel aspect of our approach for the past tense 

acquisition problem was the combination of the roulette wheel method with the sexual 

reproduction method. The selected members entered the breeding pool and then bred with 

randomly a chosen member from that pool. After selection, only the offspring form the next 

generation of populations – parents (or members of previous/breeding population) were 

discarded. Despite the use of sexual reproduction, we did not include gender effects in the 

method or its outcomes. 

 

As a result of sexual reproduction, the best properties of parents did not always get 

transferred to offspring. This is mainly because (i) an individual (parent) can only pass one 

copy of each gene (or intrinsic parameter) to its offspring. Therefore, there is an equal chance 

that either a maternally inherited gene or a paternally inherited gene will get transmitted to 

the offspring [33]. Since, after getting selected in breeding pool, the members breed 

randomly, the best properties do not always get transferred effectively, since the 

advantageous gene may not be inherited. (ii) Although some traits are inherited from parents 

during reproduction, these inherited traits are tendencies and offspring inherit the 

predisposition to exhibit that behaviour. Most traits, however, are the product of a 

developmental process involving interaction with the environment – usually skills and 

behaviours that are acquired by experience in the organism’s lifetime and make it compatible 

with its environmental and survival needs. Environmental traits are not transferred genetically 

from one generation to another. It is the combination of inherited and environmental traits 

that make each individual unique [12]. 

 

Repeat: the entire process was iterated until ANN parameters did not markedly change across 

generations or performance started to converge, i.e. the learning error reached a small value. 
 

4. English Past Tense Dataset 

 

The dataset was based on the “phone” vocabulary from Plunkett and Marchman [34] past 

tense model. The past tense domain was modelled by an artificial language created to capture 

many of the important aspects of the English language, while retaining greater experimental 

control over the similarity structure of the domain [34].  

 

Artificial verbs were monosyllabic and were constructed from English phonemes. There were 

508 verbs in the dataset. Each verb had three phonemes – initial, middle, and final. The 

phonemes were represented over 19 binary features. A network thus had 3×19 = 57 input 
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units and 3×19 + 5 = 62 units at the output. The extra five units in the output layer were used 

for representing the affix for regular verbs in binary format.  

 

In the training dataset, there were 410 regular and 98 irregular verbs. These were divided into 

four types: regular verbs that formed their past tense by adding /ed/ - e.g. visit – visited; 

regular verbs which formed their past tense by adding /d/ - e.g. tame – tamed, regular verbs 

which suffixed /t/ - e.g. clap – clapped, and finally the irregular verbs, e.g. hide – hid or go – 

went. In the dataset, out of 410 regulars, there were 271 /ed/ verbs, 90 /d/ verbs, 49 /t/ verbs. 

As this is an imbalanced dataset, generating a classifier is challenging as the classifier tends 

to map/label every pattern with the majority class. 

 

A second dataset was also created to assess the generalisation performance of the model. The 

main intent was to measure the degree to which an ANN could reproduce in the output layer 

properly inflected novel items presented in the input, according to the regular rule. The 

generalisation set comprised 508 novel verbs, each of which shared two phonemes with one 

of the regular verbs in the training set, for example wug – wugged [14, 43], i.e. generalisation 

set consists of novel regular verbs. This use of novel verbs is standard practice for 

generalisation testing in context of tense formation. 

 

5. Experimental Design 

 

In order to explore the behaviour of the model in different lineages, i.e. combinations of 

genetic and environmental influences, three replications of the model were tested, each 

having a twenty-generation duration. The experiments were conducted on Condor, which is a 

platform that supports running high throughput computing on large collections of distributive 

owned computing resources [40]. It follows a master-slave type configuration, which has 

proved suitable for training neural network architectures [27]. 

 

Each scenario was characterised by its own initial population (produced with random binary 

genomes) and unique values for the other heuristics involved, such as initial weights. The 

evolutionary methodology was then applied to each of these model instantiations, such that 

they all shared the same range of variation for genetic and shared environmental influences. 

At the same time, however, they were unique, for each of them began with a different initial 

population created from random binary genomes. Thus, having three replications (r1, r2, and 

r3) of the model aided in evaluating the robustness of the method. 

 

For each generation, there were 50 pairs of DZ and 50 pairs of MZ twins with their 

computational parameters encoded into a genome. These were split in breeding and non-

breeding, where the former is the population containing the 1st twin out of each of the twin 

pairs (100 networks) and the latter is the population containing the remaining 2nd twin of a 

twin pair (100 networks). These were instantiated as three-layered feed-forward networks and 

were trained using the batch version of the Rprop algorithm. The stopping condition was an 

error goal (mean squared error) of 10
-5

 within 1000 epochs. The networks were trained on the 

filtered training sets, but performance was always assessed on the full training set and then 

tested on the previously unseen generalisation set. The filter applied was based on EF values 

of each twin pair. These values represent the probability of including a particular data point 

(or training pattern) of the full training set into an individual’s filtered training set. This 

varied between 60% and 100% so that each individual would come across at least half of the 

training set. Twin pairs had the same filtered training set. In order to breed twins, different 

crossover operators were employed like single point, multi point and more. 
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Table 2 summarises the settings used in the experimental design. Moreover, empirical data 

from young children performing the past tense task [14,43], were also used to benchmark the 

performance of the proposed model with respect to this age group, which has been the subject 

of considerable research in the literature. 

 
No of Generations  20 

 Size of population Breeding = 100;   

Non-breeding= 100  

Total r1+r2+r3 across generations= 12,000  ANNs 

Size of Datasets Training= 508 

Generalisation= 508 

Training Mode Batch 

Max. training epochs 1000 

Goal MSE  10-5 

Increment to weight change, delta_inc 1.2 

Decrement to weight change, delta_min 0.5 

Maximum weight change, deltamax 50.0 

Minimum weight change, deltamin 10-6  

Initial weight update (Rprop learning rate), 

delta0 

Values from genome 

Hidden units. Steepness of logistic Values from genome 

Selection Operator Roulette Wheel- applied at the end of training 

(1000 epochs) 

Crossover 6 crossovers/chromosome; different operators used 

Environmental Factor (SES) Probability value between 60% and 100% 

Table 2: Experimental settings 

 

 

6. Results & Discussion 

 

The overall accuracy of the model on regular verbs was higher than that on irregular verbs. 

The mean performance on the full training set ranged between 74% and 80% for regular 

verbs, and between 34% and 40% for irregular verbs. The model was able to efficiently 

generalise the past tense rule in novel items with the mean accuracy rate of around 60%.  

 

The performance of our model compares well with empirical data for children reported in the 

literature [1, 47]. The behavioural data in [1] comprise of performance results of 442 6-year 

old children on past tense test. They were tested on 11 regular verbs and 8 irregular verbs. 

The average accuracy achieved by children on regular verbs is centred around 90%, whereas 

the average accuracy for irregular verbs is centred on 38%. It also agrees to a large extent 

with the performance reported in the developmental study of [47] for 5-7 year old children 

are: for regular verbs, accuracy rates are 60% (5 year olds), 75% (6 year olds) and 80% (7 

year olds); for irregular verbs, accuracy rates are 25% (5 year olds), 58% (6 year olds) and 

50% (7 year olds). 

 

We compared our model’s performance with two other past tense models from [43] and [14]. 

In the former model, 1000 networks were trained for 1000 epochs in various degrees of 

environmental and genetic variation scenarios. The experimental setting that closely matched 

our experiments, referred to as G-wide and E-narrow, resulted in average accuracy of 80% 

for regular verbs and 38% for irregular verbs. In latter case, the model comprised of network 

trained for 400 epochs, with results averaged over 10 replications with different random 

seeds. The results corresponding to 6 year olds fall in the range of 60%-80% in case of 

regular verbs and between 20%-40% for irregular verbs, achieved in the window of 51-70 

epochs.  Their model also achieved over 80% generalisation accuracy. 
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We also analysed the results, initially using independent linear regressions to assess 

performance / heritability / parameter changes for each population over the generations. 

Individually reliable trend lines at the p=.05 level are shown on the following figures. Given 

the overall design, which combined repeated measures (e.g., regular verb performance, 

irregular verb performance, generalisation) and between group measures (replication 

population; breeding vs. non-breeding populations), trajectory analysis was used to assess 

overall patterns in the component linear regressions [44]. 

 

Figure 1 depicts the mean accuracy with which breeding and non-breeding twin populations 

formed past tenses for regular verbs across a sequence of generations, for three replications 

with differential initial genomes. These graphs summarise the results from 12,000 networks. 

Figure 2 shows equivalent data for irregular verbs, while Figure 3 represents the 

generalisation results. In each case, a zigzagged line indicates the mean accuracy level of the 

100 networks for each population at each generation, while a straight line represents the 

general trend observed in that replication scenario. The trend line was derived from a linear 

regression line based on the least squares method, predicting mean performance level from 

generation number. R
2
 values were relatively small, reflecting the non-monotonic changes in 

performance over generations. This is in line with changes in mean trait levels in animal 

populations following selective breeding, such as the open field behaviour of mice [8, 32]. A 

red star in these figures indicates replications wherein patterns emerging were most 

statistically significant, as discussed below. 

 

 
Figure 1: Mean performance per generation for breeding (left) and non-breeding (right) twin populations on regular verbs 

 

 

Figure 2: Mean performance per generation for breeding (left) and non-breeding (right) twin populations on irregular verbs 

 

 

Figure 3: Mean generalisation accuracy per generation for breeding (left) and non-breeding (right) twin populations 

* * 

* 
* * 
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We initially considered performance of application of the past tense rule, comparing the 

measures of regular verb performance against generalisation, for the three replications and 

breeding versus non-breeding populations (12 trajectories). A fully factorial ANCOVA 

revealed no overall change in performance across the generations (F(1,108)=2.23, p=.138, 

p
2
=.020). However, this masked a differential pattern between replications, with some 

showing rising performance and others no change (F(2,108)=8.65, p<.001, p
2
=.138). This 

pattern was common across measures and breeding/non-breeding populations. Regular verb 

performance was reliably higher than generalisation (F(1,108)=6288.30, p<.001, p
2
=.983).  

 

Irregular verb performance, by contrast, showed no individual population with rising 

performance across generations, though the replication populations showed consistently 

different levels of accuracy (F(2,108)=3.27, p=.042, p
2
=.057). Comparison to regular verb 

performance indicated that the relationship between performance and generation was reliably 

modulated by measure (F(2,108)=4.53, p=.013, p
2
=.077). Regular verb performance was 

also reliably higher than irregular verb performance (F(1,108)=9958.42, p<.001, p
2
=.989). 

 

Most notable in Figures 1 to 3 is the presence of some downward trends in performance over 

generations, despite the operation of selection. Selection should serve to improve 

performance over generations, since genes conveying an advantage in learning are more 

likely to be transmitted to the next generation. The probabilistic nature of this transmission – 

the mode of sexual reproduction does not guarantee that the advantageous genes of an 

individual selected to breed will appear in the offspring, and the selection mechanism is itself 

probabilistically related to final performance level – accounts for the slow change in 

population mean performance over generations. It does not account for why performance 

should become worse over generations. 

 

The explanation is suggested by the fact that opposite trends are observed for regular verbs 

and irregulars (with generalisation patterning with regular verbs). When performance across 

generations is worsening for regular verbs, it is improving for irregular verbs, and vice versa. 

Because the learning domain of English past tense is quasi-regular, good performance across 

all mappings could in principle be achieved by scoring strongly on regular verbs, strongly on 

irregular verbs, or strongly on both (with regular verbs the more powerful driver, being in the 

majority). If optimising the same neuro-computational parameters enhanced both types of 

mapping, then selecting for either strong regular or strong irregular performance should 

enhance the performance of the population on the other mapping type as well. However, it is 

known that the two types of mappings are differentially sensitive to different parameters in 

ANNs, for example with regular mappings requiring steeper sigmoid functions and irregular 

mappings requiring more hidden units [46]. The combination of (a) selection by mean 

performance that could either be driven by stronger regular or irregular verb performance, 

and (b) parameters that favour learning of either regular or irregular mappings, together sets 

the stage for possible divergence of gene pools over generations. Even in the face of 

selection, some lineages may become specialised for regular verbs at the expense of irregular 

verbs, while other lineages may become specialised for irregular verbs at the expense of 

regular verbs. Yet others may show increased performance in both verb types across 

generations. Which path a given starting population follows will depend on the distribution of 

parameters created by the initial genomes, the set of individual environments, and stochastic 

factors involved in selection and breeding. 
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This phenomenon is similar to Waddington’s epigenetic landscape, an idea proposed by 

Conrad Waddington ([11], pp R459). In his model, Waddington associated the process of 

cellular differentiation to a marble, representing a pluripotent cell, on top of a hill. The hill 

contains many paths or valleys that the marble can roll down and each path will eventually 

lead to a distinct final differentiated state, such as a blood cell or a skin cell. He described 

each of the valleys as an individual developmental pathway or ‘chreode’. As the marble 

moves down the hill the paths and final destinations available become more limited, 

representing the increased differentiation of the cell [48].  This is what makes an initial 

pluripotent cell to become a specialised cell, and reversing this process is impossible under 

normal circumstances.  

 

Similarly, when selection is applied on a quasi-regular task, different aspects of the task may 

be optimised depending on the genetic propensities of initial populations. The trend then 

continues throughout the lineage because of genetic inheritance. Thus, if, as shown in lineage 

1 (replication 1) in Figures 1 and 2, the first few generations improve their learning of 

irregular verbs at the expense of regular verb performance, the lineage is committed to this 

pathway. Genes for good learning of regular verbs have been lost from the gene pool.  

Evolution cannot go into reverse gear and find a pathway that combines good learning on 

both verb types. Replication 3 represents the opposite case of optimisation on regulars, while 

replication 2 shows improvement in both verb types across generations. 

 

Changes in the frequency of different gene variants (here, binary values of 0 or 1) in the gene 

pool should alter the range of genetic variation across generations. Given that the range of 

environmental variation (EF of 0.6 to 1.0) remained consistent across generations, any 

changes in genetic variation should be reflected in changes in heritability. To explore this 

idea, we examined correlations in performance between MZ and DZ network twin pairs, 

using Falconer’s equations to derive estimates of heritability [32]. Heritability was estimated 

as twice the difference between MZ and DZ correlations; unique environmental effects as the 

extent to which MZ correlations were less than 1; and shared environment effects as the 

remaining variance (i.e., 1-{heritability}-{unique environment}). Strictly speaking, these 

equations assume an additive model, which only holds for MZ correlations that are no more 

than twice DZ correlations. Although in our results the correlations sometimes violated this 

condition, we continue to plot heritability estimates according to the same formulae for 

consistency. Therefore, the plotted data should be seen as proportion to the heritability and 

environmentability observed in populations, rather than direct estimates under an additive 

model. Thus, the values sometimes range outside of the range 0 to 1, as the assumptions of 

the additive model become violated.  

 

Figure 4 shows the estimates of heritability (variance due to genetic factors) for regular (4a) 

and irregular verbs (4b). These six trajectories were compared in a fully factorial ANCOVA. 

Heritability reliably reduced over generations (F(1,54)=5.54, p=.022, p
2
=.093), and this 

pattern was not modulated by measure or replication population. Though replication 2 

showed the steepest reduction in heritability, the difference in the pattern across replications 

was not reliable (p=.107). 
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Figure 4(a): Heritability or proportion of variance due to genetic 

(or structural) factors for Regular Verbs. The red star indicates a 

replication wherein patterns emerging were most statistically 
significant. 

 

Figure 4(b): Heritability or proportion of variance due to genetic 

(or structural) factors for Irregular Verbs. A red star indicates a 

replication wherein patterns emerging were most statistically 
significant.

If a lineage becomes increasingly optimised on a task (or a specific aspect of the task 

domain), the range of its domain-relevant intrinsic parameters should decrease across 

generations, as only the genes producing the best parameter values are retained. For example, 

if populations are improving on irregular verbs, which require more capacity to hold non-

systematic mappings, then across generations, networks with larger number of hidden units 

have a greater chance to get selected in the breeding pool. Across generations, the variability 

in the range of number of hidden units will reduce. By contrast, the range of variation in other 

less relevant parameters may be less affected. Optimisation and heritability should therefore 

have an inverse relationship. 

 

In line with this expectation, in replication/lineage 1, regular verb performance and rule 

generalisation dropped across generations while irregular verb performance improved. 

Heritability for regular verbs was initially higher than that for irregular verbs, centred on 0.4 

and it then increased across generations, implying lack of selection for parameter sets 

specialised for regularity. By contrast, heritability of irregular verbs was lower, centred on 

0.2, and decreased with generations, implying selection for, and a narrowing of the range of, 

parameter sets specialised for irregularity. Note that this process of specialisation causes 

overall accuracy to drop, because irregular verbs form a minority of the dataset (there are 

only 98 irregular verbs compared to 410 regular verbs).  

 

In replication/lineage 2, regular verb performance, irregular verb performance, and 

generalisation all increased across generations. Heritability of regular verbs dropped from 

high values of around 0.8 to around zero. A similar pattern was observed for irregular verbs, 

with heritability dropping from high values to almost nil. In this lineage, optimisation caused 

a narrowing of the range of genetic variation relevant to learning of both regular and irregular 

verbs. 

 

In replication/lineage 3, regular verb performance and generalisation improved while 

irregular verb performance dropped. The heritability of regular verbs decreased from 0.6 to 

0.2 while the heritability of irregulars remained stable, but at a lower value, centred on 0.2. 

These two observations suggest that the range of intrinsic parameters being targeted by 

selection works well for both regular and irregulars. But as generations progressed, there was 

a narrowing in this range for parameters more suited to regular verbs. 

 

When heritability of a particular aspect of the task reduces, it implies that variance in 

performance is less due to genetic factors and more due to shared and non-shared 

environmental factors. Figures 5(a) and 5(b) display the variance due to shared environmental 

factors, in this case the filtered training datasets. The effect of shared environment reliably 

changed over generations (F(1,54)=8.42, p=.005, p
2
=.135) though this was driven primarily 

* 
* 
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by replication 2, illustrated by an interaction of population X generation (F(2,54)=3.65, 

p=.033, p
2
=.119). The pattern was common across regular and irregular verbs. Figures 5(c) - 

5(f) confirm that the range and mean level of EF was constant across generations for all 

lineages. 

 

  

Figure 5(a): Proportion of variance due to shared environmental 
factors - Regular Verbs 

  

Figure 5(b): Proportion of variance due to shared environmental 
factors - Irregular Verbs 

 

Figure 5(c): Percentage of EF per generation replication1 

 

Figure 5(d): Percentage of EF per generation replication2 

 

Figure 5(e): Percentage of EF per generation replication3 

 

Figure 5(f): Percentage of EF per replication 

 

Figures 6(a) and 6(b) represent the variance in performance due to non-shared environmental 

factors or initial weights in our implementation. Analyses revealed no reliable effects, with 

non-shared environmental effects consistent across generations and modulation neither by 

measure type nor by replication population. The figures show that the differences in initial 

weights led to large variability in behavioural outcomes. In cases when intrinsic factors were 

not very suitable to the task domain, having good initial weights might give networks a 

fighting chance, i.e. training could be biased towards non-shared environmental factors to 

enhance behavioural performance. 

 

 

* 

* 
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Figure 6(a): Proportion of variance due to non-shared 

environmental factors - Regular Verbs 

 

Figure 6(b): Proportion of variance due to non-shared 

environmental factors - Irregular Verbs

Heritability is a useful statistic because it is scalable across potentially very large numbers of 

computational parameters (and their interactions) that contribute to the variation in learned 

high-level behaviours, or in this case, the outcome of learning for a set of ANNs. However, in 

the current simulations, relatively few parameters were encoded in the genome and permitted 

to vary across populations and between generations. Our final step of analysis, then, was to 

examine the change in mean parameter values for a given lineage across generations. This 

should reveal the domain-relevant parameters that were selected, in those cases where 

performance on one verb type was enhanced at the expense of the other, and therefore in turn 

reveal the drivers behind changes in heritability.  

 

Figure 7 depicts changes in mean parameter values for number of hidden units, initial 

learning rate, and slope of the logistic activation function. For hidden units, there was a 

reliable reduction in number across generation (F(1,54)=190.55, p<.001, p
2
=.779), with the 

reduction occurring at different rates across the three replication populations (F(2,54)=33.79, 

p<.001, p
2
=.556).  

 

 

 

 
Figure 7 (a): Change in the mean value of the number of hidden 

units per generation 

 
Figure 7 (b): Change in the mean value of the initial learning rate per 

generation 

 
Figure 7(c): Change in the mean value of the slope of logistic activation per generation 
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For learning rate, the same pattern was observed, with an overall pattern of reduction across 

generations (F(1,54)=22.69, p<.001, p
2
=.296) modulated by replication, with the reduction 

appearing in only two of the three replications (F(2,54)=12.22, p<.001, p
2
=.312). Lastly, for 

slope of logistic activation, a differential pattern also emerged, this time with an increase in 

two of the populations across generations and a reduction in the other (main effect of 

generation: F(1,54)=12.99, p<.001, p
2
=.325; interaction of generation*replication: 

F(2,54)=61.06, p<.001, p
2
=.693). Overall, replication 1 and 3 showed a common pattern of 

reduction in hidden units, reduction of learning rate, and increase in temperature. For 

replication 1, the reduction in hidden was milder, the learning rate fell lower, and the 

temperate rose higher. Replication 2 showed a different pattern of a greater fall in hidden 

units, no change in learning rate, and a drop in temperature. 

 

The three chosen parameters provided networks with capacity to learn (more hidden units can 

accommodate more input-output mappings) and/or ability to learn (optimum values of initial 

learning rate and steepness of logistic activation allow discovery of connection weights for 

those mappings). Irregular verbs belong to category of non-systematic mappings, which are 

more demanding on computational capacity. Figure 8 depicts the variation in the ranges of 

the three parameters across generations. It thus reflects the parameters being targeted by 

selection in each lineage. 

 

Lineage/replication 1 improved irregular performance at the expense of regular, and this was 

reflected by maintenance of high levels of hidden units. Learning rates declined, while genes 

for steeper logistic slopes were selected.  
 

Regular verbs have systematic input-output mappings, which are less demanding on 

computational capacity. Lineage/replication 2 improved regular performances at the expense 

of irregular verbs, and this was reflected by an increase in learning rate. Both hidden unit 

numbers and logistic slope declined. 

 

In lineage/replication 3, the main improvement over generations was on regular verbs. As 

with lineage 2, there was a decline in hidden unit number, but unlike lineage 2 there was also 

a decline in learning rate. Instead, the logistic slope showed an increase, which lineage 1 

suggested was more sympathetic to accommodating irregular mappings. 
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 Variations in the range of hidden units Variation in the range of initial learning rate Variation in the range of slope of logistic activation 

Lineage 

1 

   

Lineage 

2 

  
  

Lineage 

3 

   

Figure 8: Range of Variation of Intrinsic parameters across Generations
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7. Findings 

 

The main findings were as follows: (i) Applying selection on the individual’s performance 

level in a quasi-regular task such as past tense acquisition results in the emergence of 

divergent behaviours depending on initial conditions – both genetic and environmental. (ii) 

Once selection starts targeting a particular aspect of task domain, it starts behaving similar to 

Waddington’s epigenetic landscape. That is, from an initial pluripotent state, the 

developmental (or learning) pathway of populations (in that lineage/replication) becomes 

more specialised in the particular targeted aspect. Reversing this trend is difficult, if not 

impossible. (iii) Selection based on a stochastic method such as roulette-wheel, when 

combined with sexual reproduction method for population generation, has a limiting effect on 

final behavioural (or performance) levels achieved. Performance is affected in two ways: 

first, since roulette-wheel selection has a stochastic nature, there is a possibility of not-so-fit 

members being selected in the breeding pool. Secondly, the sexual reproduction method used 

to generate offspring prevents reliable transfer of best properties from parents to offspring. 

(iv) Heritability acts as an identifier of the aspect of the quasi-regular task being targeted by 

selection. Highly heritable behaviour indicates that the trait is not being selected for, whereas 

behaviour with low heritability implies selection and optimisation. Thus an inverse 

relationship exists between heritability and optimisation. (v) A higher proportion of variance 

caused due to shared environmental factors (filtered training sets) is an indicator of good or 

gifted learners. In other words, it shows that the particular population members have greater 

genetic predisposition of successfully acquiring the desired behaviour or task. (vi) Non-

shared environmental factors (initial weights) lead to significant proportions of behavioural 

variance. This effect becomes magnified when intrinsic properties are not particularly 

suitable. In such cases, having good initial weights can provide networks with the extra 

support needed to acquire a task. Hence, training could be biased towards non-shared factors 

to improve performance.  

 

8. Conclusion 

 

In this paper, we introduced a novel computational approach inspired from principles of 

behavioural genetics to model the performance of 6-year-old children on English past tense 

acquisition. We analysed the proportion of variance accounted for by ANN computational 

parameters (or ‘genes’) and filtered training sets and initial weights (or ‘environment’) and 

also highlighted the importance of selection and sexual reproduction methods. Our model 

was able to identify the causal factors leading to behavioural or performance variability 

within that population and the factors responsible for that variability. Most importantly, our 

model showed that divergent behavioural outcomes can emerge when selection is applied on 

a quasi-regular task. Learning pathways start to behave like Waddington’s landscape, 

becoming more specialised in one aspect of the task across generations. The model also 

showed that heritability and optimisation have an inverse relationship, with heritability 

identifying which aspects of the task domain are being targeted by selection. ANN training 

can therefore be biased towards specific aspects based on selection results to get desired 

performance (behavioural) outcomes. There are several avenues requiring further 

investigation to establish long-term trends and emerging behaviour as the populations evolve. 

More complex genome representations, for example, may allow encoding more 

computational parameters and increasing genetic variability. Also, it is necessary to 

understand the impact of employing alternative selection schemes on population divergence, 
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as well as the implications for non-random assignment of environments to genotypes implied 

by gene-environment correlations believed to hold in human populations [33]. 
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