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Abstract. In this work, we explore the use of artificial neural networks (ANN) 
as computational models for producing English past tense verbs by combining 
them with the genetic algorithms (GA). The principal focus was to model the 
population variability exhibited by children in learning the past tense. This 
variability stems from genetic and environmental origins. We simulated the 
effects of genetic influences via variations in the neuro computational 
parameters of the ANNs, and the effects of environmental influences via a filter 
applied to the training set, implementing variation in the information available 
to the child produced by, for example, differences in socio-economic status. In 
the model, GA served two main purposes - to create the population of artificial 
neural networks and to encode the neuro computational parameters of the ANN 
into the genome.  English past tense provides an interesting training domain in 
that it comprises a set of quasi-regular mappings. English verbs are of two 
types, regular verbs and the irregular verbs. However, a similarity gradient also 
exists between these two classes. We consider the performance of the 
combination of ANN and GA under a range of metrics. Our tests produced 
encouraging results as to the utility of this method, and a foundation for future 
work in using a computational framework to capture population-level 
variability 
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1   Introduction 

Artificial neural networks (ANNs) are computational abstractions of the biological 
information processing system. In this work, we combine ANNs with genetic 
algorithms (GA) to develop a new computational model for learning English past 
tense verbs.  

The English past tense has been widely studied as a testing ground for theories of 
language development. This is because it is quasi-regular mapping, comprising both a 
productive rule (add –ed to the verb stem to produce the past tense) and a set of 



exceptions to this rule.  This raises the question of the processing structures necessary 
to acquire the domain. Until now substantial amount of work has used ANNs as 
cognitive models of the acquisition process (see [1] for review). No work to date, 
however, has considered how to capture the wide range of variability that children 
exhibit in acquiring this aspect of language. Since ANNs constitute parameterised 
learning systems, they provide a promising framework within which to study this 
phenomenon [2]. 

Factors affecting language development are attributed to genetic and 
environmental influences. To model genetic influences, we use GA as a means to 
encode variation in the neuro computational parameters of the ANNs, thereby 
modulating their learning efficiency. These parameters are responsible for how the 
network is built (e.g., number of hidden units), its processing dynamics (steepness of 
the activation function), how it is maintained (weight decay), and how it adapts 
(learning rate, momentum). To model environmental influences, we apply a filter to 
the training set to alter the quality of the information available to the learning system. 
One candidate causal factor in producing environmental variation is socio-economic-
status (SES). A body of research suggests that children in lower SES families 
experience substantially less language input and also a narrower variety of words and 
sentence structures [3]. The filter creates a unique subsample of the training set for 
each simulated individual, based on their SES. 

This paper is organised as follows. First we provide information about the problem 
domain. Then the methodology adopted in our approach is described. Next we discuss 
the datasets used. In section 4 the experimental setups and performance assessment 
techniques are described. Finally we present the experimental results and discuss the 
findings. 

 

2.   The English past tense problem  

The English past tense is an example of a quasi-regular domain. This problem 
domain has dual nature – the majority of verbs form their past tense by following a 
rule for stem suffixation, also referred to as + ed rule. This rule allows for three 
possible suffixes - /d/ e.g. – tame – tamed; /t/ e.g. – bend – bent and /ed/ - e.g. – talk – 
talked. However, a significant number of verbs form their past tenses by exceptions to 
that rule (example: go – went, hide - hid) [4]. The verbs adhering to the former rule 
based approach are called regular verbs, while the verbs belonging to the second 
category are called irregular verbs. Also some of the irregular verbs share the 
characteristics of the regular verbs. For instance, many irregular verbs have regular 
endings, /d/ or /t/ but with either a reduction of the vowel, example: say – said, do - 
did or a deletion of the stem consonant, example: has – had, make – made [5]. This 
overlap between regular and irregular verbs is also a challenge for the model. 

Our base model, prior to implementing sources of variation, was inspired by that 
proposed by Plunkett and Marchman [4], though see [6] for more recent, larger scale 
models. Plunkett and Marchman suggested that both the regular and the exception 
verbs could be acquired by an otherwise undifferentiated three-layer backpropagation 



network, trained to associate representations of phonological form of each verb stem 
to a similar representation of its past tense. 

3   Methodology 

A synergy of ANN and GA is applied to model the system for acquisition of 
English past tense verbs. The GA component is used to create a population of ANNs 
and to encode the neuro computational parameters of the ANN into the genome.  

The methodology can be summarized as follows: 
1. The first step is to design ANNs incorporating a set of computational 

parameters that would constrain their learning abilities. In our case, we select 
8 parameters. These parameters correspond to how the network is built 
(number of hidden units, architecture), its activation dynamics (the slope of 
the logistic activation function), how it is maintained (weight decay), how it   
adapts (learning rate, momentum, learning algorithm), and how it generates 
behavioral outputs (nearest neighbour threshold). 

2. The next step concerns the calibration of the range of variation of each of 
these parameters. Encoding the parameters within a fixed range allows 
variation in the genome between members of population, which then 
produces variations in computational properties. The range of variation of 
the parameter values serves as the upper and the lower bound used for 
converting the genotype (encoded values) into its corresponding phenotype 
(real values).  

3. The third step consists of encoding the range of parameter variation in the 
artificial genome using a binary representation. We are using 10 bits per 
parameter; overall the genome has 80 bits. The parameters used and their 
range of variation are given in Table 1. 

 
Table 1: The Genome describing the neuro - computational parameters and their range. 
 

Parameter Range of variation 

No of Hidden Units 6 - 500 
Learning Rate .005 – 0.5 
Momentum 0 – 0.75 
Unit threshold function 
(steepness of logistic function) 

.0625 - 4 

Weight Decay 0.2 – 0.6 
Nearest Neighbour Threshold 0.05 – 0.5 

 
The remaining two parameters are the learning algorithm and the architecture, 

where Backpropagation training and a 3-layer feed forward network are adopted 
respectively. In our initial implementation, these parameters were not varied. 
Then, the methodology continues as follows: 

 



4. The fourth step concerns breeding the population of 100 ANNs using this 
genome.  

5. The fifth step focuses on implementing the variation in the quality of 
environment, accounted for by SES, by means of filtered training sets. An 
individual’s SES is modeled by a number selected at random from the range 
0.6-1.0. This gives a probability that any given verb in the full training set 
would be included in that individual’s training set. This filter is applied a 
single time to create the unique training set for that individual. The range 
0.6-1.0 defines the range of variation of SES, and ensures that all individuals 
are exposed to more than half of the past tense domain. 

6. The last step is about training and evaluating training performance and 
generalisation. 

4   The English past tense dataset  

The English past tense domain is modeled by an artificial language created to 
capture many of the important aspects of the English language, while retaining greater 
experimental control over the similarity structure of the domain [4]. Artificial verbs 
are monosyllabic and constructed from English phonemes. There are 508 verbs in the 
dataset. Each verb has three phonemes – initial, middle and final. The phonemes are 
represented over 19 binary features. The network thus has 3*19 = 57 input units and 
3*19 + 5 = 62 units at the output. The extra five units in the output layer are used for 
representing the affix for regular verbs in binary format. 

In the training dataset there are 410 regular and 98 irregular verbs. As this is a 
radically imbalanced dataset generating a classifier is challenging as the classifier 
tends to map/label every pattern with the majority class. The mapping of the training 
set is given a frequency structure, called the token frequency, representing the 
frequency with which the individual encountered each verb. Some verbs are 
considered of high frequency whilst others of low frequency. The token frequency is 
implemented by multiplying the token frequency bit with the weight change generated 
by the difference between the actual output and the target output. In our experiments, 
the weight change of high frequency verbs was multiplied by 0.3 and of the low 
frequency verbs by 0.1. 

A second dataset is created to assess the generalisation performance of the model. 
The main intent is to measure the degree to which a network can reproduce in the 
output layer properly inflected novel items presented in the input. The generalisation 
set comprises 508 novel verbs, each of which share at least two phonemes with one of 
the verbs in the training set, for example wug – wugged [7]. 

5   Experimental settings and performance assessment  

A population of 100 ANNs, whose parameters are generated by the GAs, was 
trained in two different setups. In the first setup, the population of ANN was trained 
using the full training set, i.e. it contains all the past tense verbs, along with their 



accepted past tense forms (henceforth referred as the Non Family setup). In the 
second setup, we used the filtered training sets, by taking samples from the perfect 
training set to create subsets, for each member of the population (henceforth referred 
as the Family setup). This arrangement ensures that each member of the population 
has a different environment or training set, and thus simulated the effect of SES. 
Though the networks are trained according to their filtered or Family training sets, the 
performance is always assessed against the full training set. A comparison of Non 
Family and Family setups demonstrates the impact of variability in the environment, 
independent of the learning properties of the ANNs. 

We report below results from training 100 feed forward nets, using the batch 
version of RPROP algorithm. The stopping condition was an error goal of 10-5 within 
1000 epochs. The performance was assessed using two modes - the MSE with weight 
decay and the recognition accuracy using nearest neighbours based criteria. The first 
criterion employed the Hamming distance while the second one was threshold based 
and used the Root Mean Square (RMS) error. 

5.1    Nearest neighbour technique based on Hamming Distance 

In the training set, there were 508 monosyllabic verbs, constructed using 
consonant-vowel templates and the phoneme set of English. Phonemes were 
represented over 19 binary articulatory features.  

The nearest neighbour accuracy was measured between the actual and the target 
patterns on a phoneme – by – phoneme basis using the Hamming distance. In 
information theory, the Hamming distance between two strings of equal length is the 
number of positions at which the corresponding symbols are different. In other words, 
it measures the minimum number of substitutions required to change one string into 
the other, or the number of errors that transformed one string into the other. This 
method provides an efficient way of calculating the nearest neighbours. The algorithm 
for calculating the Hamming distance is listed below. 

1. Take the first pattern from the actual output and the desired output. 
2. Calculate the Hamming distance between these two patterns, individually, 

for all three phonemes. This implies that phoneme 1 of actual output is 
matched with phoneme 1 of the desired output. Similarly, phoneme 2 and 
phoneme 3 are matched with corresponding phonemes in desired output. 

3. IF the Hamming distance between all three phonemes is less than 2, then 
calculate the Hamming distance between last five bits of both patterns. 

4. IF this distance is equal to zero, then pattern is counted as correct 
classification, ELSE it is counted as an error or misclassification. 

5. In the case of misclassification, the last five bits of both the actual output and 
the desired output are compared with the allomorph (which consists of all 
possible classes with their binary representations), to find out the actual 
assigned class and the desired class. 

6. IF the last five bits of the actual pattern do not match with any pattern of 
allomorph, then that pattern is classified as ‘random’. 



7. In case the IF condition specified in step 3 does not hold, then the same 
pattern of actual output is matched with the next pattern from the desired 
output set. This process continues till either the IF condition (of step 3) is 
satisfied OR till all patterns in the desired output set have been scanned 
through. In the latter case, if no match is found, then that pattern of actual 
output set is considered as ‘Not Classified’. Repeat the process with next 
patterns of the actual output set.  

 
This method gives us the total number of correct classifications, total number of 
errors and the types of errors for each network. The allomorph used in this 
algorithm is as follows: [0 0 0 0 0] represents Irregular (Ir) verbs; [0 0 1 0 1] 
denotes a Regular verb with +d rule (R^d); [0 1 1 0 0] stands for a Regular verb 
with +t rule (R^t); [0 1 0 1 0] denotes a Regular verb with +ed rule (R^ed). 

5.2   Nearest neighbour technique based on RMS error threshold 

We tested the performance of the networks with an alternative technique, nearest 
neighbour threshold. The process is as follows: 

1. Take the first pattern from the actual output set. 
2. For each actual output pattern, starting from the first target pattern, consider 

all available target patterns. 
3. Calculate the root mean square error between the actual and target pattern on 

a phoneme–by–phoneme basis. This implies, calculating the RMS between 
phoneme 1 of the actual output pattern and phoneme 1 of target set pattern, 
and then the RMS values for phoneme 2 and phoneme 3 as well. This results 
in a 508 row by 508 column array of RMS values, where each array element 
contains 3 values corresponding to the RMS error between the three 
phonemes. 

4. Based on the range of the nearest neighbour values, as specified in the 
genome of the artificial neural networks, apply threshold on the RMS values 
of three phonemes taken together. 

5. Select only those neighbours whose RMS error values are lower than the 
corresponding threshold values.  

6. Compare the last five bits of the actual pattern and the selected nearest 
neighbours with the allomorph to determine their respective classes. 

7. Select the ‘majority’ class from amongst the neighbours and compare it with 
the class assigned to the actual output pattern. If these matches, then count 
success else count miss classification. Repeat this process for all the patterns 
of the actual output set. 



6   Results  

We report on the classification accuracy and generalisation performance, with 
respect to three measures – the MSE, the Hamming distance and lastly the nearest 
neighbour threshold. 

In terms of measuring performance based on Hamming distance for all types of 
verbs, i.e. irregulars, R^d, R^ed and R^t, Table 2 lists the mean values for 
classification success. Table 3 contains the types of miss classifications the networks 
made and the mean values of those errors and finally Tables 4 and 5 list the improved 
results after applying some post processing techniques, discussed below. 

Table 2: mean classifications success per category. 

 
 
Type of 
verb 

Mean Classification on Training Set Mean Classification on 
Generalisation Set 

Non Family 
Networks 

Family 
Networks 

Non Family 
Networks 

Family 
Networks 

R^d 252.24 242.60 265.28 251.69 
R^t 71.80 57.56 71.57 57.06 
R^ed 10.70 10.89 7.21 7.46 
Irreg 5.29 7.22 N.A. N.A. 

 

Table 3: Types of miss classification errors and their mean values 

Assigned Category Desired Category Training Set Generalisation Set 
Non Family Family Non Family Family 

Irreg R^d 3.68 4.35 3.12 3.97 
Random R^d 8.58 12.05 9.70 12.12 
R^d R^ed 5.06 6.44 8.00 10.08 
Random R^ed 34.70 31.68 41.40 38.93 
R^t R^d 9.15 7.36 9.69 8.00 
R^t R^ed 2.71 1.77 4.39 3.60 
Random R^t 14.47 23.89 17.80 25.99 
R^d R^t 8.81 9.13 7.28 7.66 
Irreg R^ed 4.74 7.61 4.99 6.24 
R^d Irreg 2.80 3.17 0 0 
Irreg R^t 1.26 3.38 1.30 4.54 
Random Irreg 11.69 10.21 0 0 
R^ed Irreg 1.39 1.58 0 0 
R^ed R^t 0.89 0.92 0.85 0.90 
R^t Irreg 1.30 0.87 0 0 

 

Table 3 lists the types of misclassifications made by the population of networks. 
The most frequent misclassification was classifying a regular verb as a regular but in 
the wrong category, that is, the incorrect allomorph, e.g. instead of talk – talked (+ed), 



networks convert it as talk – talkd (+d or +t). The second most frequent mistake was 
classifying regular or irregular verbs as random. In most cases, this happens due just 
to the difference of one bit between the actual output affix (last five bits) and the 
target verb affix. 

We do not consider the aforementioned two misclassifications as errors on the 
following grounds. 

• In the first case, it is evident that the network(s) applied the production rule 
for forming past tense. This implies that the methodology used for 
converting verb to its past tense is correct. 

• In the latter case, the network(s) produces all three phonemes correctly (the 
phonemes of the actual and target patterns match). The difference of one bit 
occurs in the last five bits (past tense affix). This indicates that the 
mechanism followed is correct, especially since the network does not 
categorise the verb in an incorrect category. 

Therefore, we applied post-processing techniques in these two cases, which improved 
the accuracy of the model. 
 

Table 4: Average performance and improvements on training set 

 Non Family Networks Family Networks 
Correct in % Error in % Correct in % Error in % 

Actual Results 66.9 21.9 72.7 21.6 
Improved Results 84.4 4.4 82.8 11.1 

 
 

Table 5: Average performance and improvements on the generalisation set 

 Non Family Networks Family Networks 
Correct in % Error in % Correct in % Error in % 

Actual Results 67.7 21.3 62.2 24.0 
Improved Results 80.0 9.9 75.2 11.1 

 
Improving Performance on training set: We employed three different techniques 

in order to improve the performance. 
 1. Considering misclassification amongst regular verbs as okay. 
2. Regular verb patterns classified as random due to difference in just 1 bit were 

considered okay. 
3. Irregular verb patterns classified as random due to difference in just 1 bit were 

considered okay. 
Improving Performance on the generalisation set: The following technique was 

applied to improve generalisation performance. 
1. Verb patterns classified as random due to difference in just 1 bit were considered 

okay. 
 



Our model achieved 84.4 % and 80.0% accuracy on training datasets when used in 
the Non Family mode and an accuracy of 82.8 % and 75.6 % on generalisation dataset 
when tested in Non Family and Family modes, respectively. The initial results 
indicate that classification accuracies are not significantly different in the two modes. 
For example, in Table 4, the population has the average/mean accuracy of 84.4% 
when exposed to full training set (Non Family mode) and of 82.8% when exposed to 
filtered training set (Family mode). This held for generalisation performance as well, 
as described in Table 5. These results indicate that for the ranges of genetic and 
environmental variation considered, genetic variation has more influence in 
determining performance while acquiring past tense. 

Performance based on Mean Square Error 

As the second measure of performance assessment, the MSE was used to predict 
the accuracy. The minimum, maximum, mean and the standard deviation of time 
taken, performance and epochs is reported in Table 6. 

Table 6: Performance based on MSE 

 Non Family Family 
Min Max Mean STD Min Max Mean STD 

Time 
(seconds) 

170 164,653 1,930 387 170 164,668 1,366 976 

Performance 0.0502 42.5200 0.1229 0.3765 0.0360 42.4800 0.1100 0.3600 
Epochs 425 1000 484 280 542 1000 491 284 

Performance based on nearest neighbour threshold 

The performance is reported in terms of number of correct classifications and the 
number of miss classifications made in Table 7. 

 

Table 7: Performance based on nearest neighbour threshold using RMSE 

 Non Family Family 
Min Max Mean STD Min Max Mean STD 

Correct Classifications 365 414 387 17 364 427 393 25 
Misclassifications 94 143 121 17 81 144 115 25 

 
 

The results show that the average correct classification performance is 76.2% and 
77.4% in the discussed modes. 

 



7   Conclusion 

In this paper, we explored the use of artificial neural networks as 
computational models for producing English past tense verbs, and proposed a 
synergistic approach to capture population variability by (a) combining ANN 
with genetic algorithms and (b) applying a filter to the training set to simulate 
environmental influences such as socioeconomic status. The performance of the 
model was assessed using three different measures and in two different setups. 
Our tests produced encouraging results as to the utility of this method, and a 
foundation for future work in using a computational framework to capture 
population-level variability. These results indicate that for the ranges of genetic 
and environmental variation considered, genetic variation has more influence in 
determining performance while acquiring past tense. Our next steps are to 
consider the impact of different respective ranges of genetic and environmental 
variation, along with exploring different neural architectures. 
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