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Abstract 

The use of self-organising feature maps (SOFM) in models of cognitive development 

has frequently been associated with explanations of critical or sensitive periods. By 

contrast, error-driven connectionist models of development have been linked with 

catastrophic interference between new knowledge and old knowledge. We introduce 

a set of simulations that systematically evaluate the conditions under which SOFMs 

demonstrate critical/sensitive periods in development versus those under which they 

display interference effects. We explored the relative contribution of network 

parameters (for example, whether learning rate and neighbourhood reduce across 

training), the representational resources available to the network, and the similarity 

between old and new knowledge in determining the functional plasticity of the maps. 

The SOFMs that achieved the best discrimination and topographic organisation also 

exhibited sensitive periods in development and limited interference. However, fast 

developing, coarser SOFMs also produced topologically organised representations, 

while permanently retaining their plasticity. We argue that the impact of map 

organisation on behaviour must be interpreted in terms of the cognitive processes that 

the map is driving.  
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Introduction 

Theories of how the brain acquires knowledge are required to address the stability-

plasticity problem, that is, how new knowledge may be incorporated into an 

information processing system while preserving existing knowledge (Grossberg, 

1987). The stability-plasticity problem has particular importance where the 

individual’s environment is non-stationary – that is, where the information content of 

experience tends to change over time. If one assesses the individual in adulthood, one 

can ask whether earlier experiences or later experiences were more influential in 

determining adult behaviour. If the earlier experiences were more important, one 

might refer to this as evidence of a critical or sensitive period in development. If the 

later experiences were more important, one might refer to this as evidence of 

catastrophic interference of new knowledge overwriting old knowledge.  

The stability-plasticity problem comes to the fore in attempts to construct 

computational models of learning and development. For example, at least one popular 

computational formalism for studying development – backpropagation connectionist 

networks – has indicated that catastrophic interference may be a serious problem for 

the cognitive system when it attempts to acquire conceptual knowledge. Indeed, it 

may be such a serious problem that special processing structures are needed to 

overcome it (e.g., McClelland, McNaughton & O’Reilly, 1995). 

In this paper, we consider the effects of a non-stationary environment on 

learning within an alternative neurocomputational formulism, self-organising feature 

maps (Kohonen, 1995). Such maps have been employed within a range of 

developmental models, capturing the formation of representations within visual, 

sensorimotor, and language development domains (e.g., Li, Farkas, & MacWhinney, 

2004; McClelland et al., 1999; O’Reilly & Johnson, 1994; Oliver, Johnson, 
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Karmiloff-Smith & Pennington, 2000; Westermann & Miranda, 2002, 2004). To date, 

and in contrast to backpropagation networks, self-organising feature maps have been 

more closely associated with critical or sensitive period effects in development. 

However, their potential vulnerability to catastrophic inference has not been 

systematically explored. If these maps are a key mechanism within cognitive 

development, how robust are they to variations in the environment? In the following 

sections, we compare critical/sensitive period and catastrophic interference effects in 

self-organising feature maps under conditions of a non-stationary environment. We 

take into account three potentially important factors that may modulate these effects: 

the intrinsic conditions of plasticity within the maps, the representational resources 

available to the system, and the relative similarity between old and new knowledge. 

We begin with a brief review of the empirical and computational literature relevant to 

the two facets of the stability-plasticity problem. 

 

Catastrophic Interference 

For the human cognitive system, it is rare to find a total disruption or loss of 

previously acquired long-term knowledge as a result of learning new information. We 

are able to acquire new memories without forgetting old information. For example, 

our somatosensory cortex is able retain and assimilate new information during motor 

learning without compromising the stability of previous skills (Braun, Heinz, 

Schweizer, Wiech, Birbaumer & Topka, 2001; Buonomano & Merzenich, 1998). 

Nevertheless, under some circumstances, catastrophic interference can be observed.  

When Mareschal, Quinn, and French (2002) examined sequential category learning in 

3- to 4-month-old infants, they found an asymmetric interference effect. The infants 

were shown a series of pictures of either cats or dogs and were able to induce the 
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CAT or DOG category sufficiently to distinguish a novel animal from a cat or dog in 

a subsequent preferential looking task. When the two categories were learned 

sequentially, knowledge of the DOG category was preserved when the CAT category 

was learned after it. However, if learning of the DOG category followed learning of 

the CAT category, the later learning interfered with the earlier learning and 

knowledge of the CAT category was lost. The authors interpreted this effect in terms 

of catastrophic interference in a connectionist memory system; the asymmetry was 

taken to reflect the relative perceptual similarity structure of the two categories. 

Interference effects have also been observed for more robust, long-term 

knowledge. Pallier et al. (2003) examined the word recognition abilities of adults born 

in Korea who were adopted between the ages of 3 and 8 by French families. For these 

individuals, the language environment changed completely from Korean to French at 

the point of adoption. Behavioural tests showed that these adults had no residual 

knowledge of the Korean vocabulary that they knew as children. Moreover, functional 

brain imaging data demonstrated that their response to hearing Korean was no 

different to that produced by listening to other foreign languages that they had never 

encountered, and was the same as that found in native French speakers who had never 

learned Korean. Together the behavioural and imaging data are suggestive that under 

some circumstances, previously acquired knowledge can indeed be overwritten. 

Interestingly, comparison of the brain activations produced when listening to French 

differed between the two groups, with the Korean-born adults producing weaker 

activations than the French monolinguals. Interpretation of this effect is not 

straightforward but it does indicate that the earlier phase of Korean learning appears 

to have left its mark on the brains of the adopted individuals. It is possible that 

residual traces of prior Korean knowledge may still exist such that, should these 
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individuals be re-exposed to Korean, they may find it easier to re-acquire the language 

(Pallier et al., 2003). 

The use of connectionist networks as models of memory has led to the 

extensive consideration of catastrophic interference in these systems (see French, 

1999, for a review). Catastrophic interference appears to be a central feature of 

architectures that employ distributed representations and it is closely tied to their 

ability to generalise. Via superposition of knowledge over a common representational 

resource (the matrix of connection weights), distributed systems offer generalisation 

for free; that is, they can extract the central tendency of a series of exemplars and use 

this tendency to generate responses to novel inputs. Where new knowledge conforms 

to the central tendency extracted from previous knowledge, learning is facilitated and 

new knowledge is easily accommodated (Ratcliff, 1990). Problems of catastrophic 

interference arise when the new knowledge is different to the old knowledge. The 

later learning has to use the common representational resource and overwrites 

previous knowledge (McCloskey & Cohen, 1989; Ratcliff, 1990). 

Numerous computational solutions have been proposed in order to alleviate 

the catastrophic interference problem and thereby redeem connectionist models as 

plausible models of human memory. These include modifications to the back-

propagation learning rule in order to produce semi-distributed representations 

(Kortge, 1990; French, 1991, 1992), and the use of noise (French & Chater, 2002) or 

‘pseudo’ patterns to extract the function learned by the network in response to early 

training and interleave this knowledge with subsequent training (Robins 1995; Robins 

& McCallum, 1998; Ans, Rousset, French & Musca, 2004). Essentially, catastrophic 

interference can be avoided in three ways: (1) use new representational resources for 

new knowledge; (2) use non-overlapping representational codes on the same resource 
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(‘localist’ coding); and/or (3) simultaneously refresh old knowledge as new 

knowledge is introduced, so that the old and new knowledge can be combined within 

distributed representations over the same resource (called ‘interleaving’). 

The occurrence of catastrophic interference effects in connectionist models 

prompted a proposal that the human cognitive system may incorporate processing 

structures specifically to avoid it. McClelland, McNaughton and O’Reilly (1995) 

suggested that human memory is split into two systems – the neocortex and the 

hippocampal system. The hippocampal system allows for rapid learning of new 

information, which is then transferred and integrated into the previous long-term 

knowledge stored in the neocortex. Seidenberg and Zevin (2005) argue that humans 

do not exhibit catastrophic interference effects because our experiences are typically 

interleaved. It is when we are immersed in one particular type of experience that 

interference may occur (as was the case in the Korean children switched to a French 

language environment). Moreover, in many cases, the new knowledge we are trying 

to learn bears some resemblance to previously acquired knowledge, reducing the 

scope for interference effects. 

 To date, the majority of simulation work exploring catastrophic interference 

effects has focused on error-driven learning systems such as backpropagation 

networks (Ans, Rousset, French & Musca, 2004; French, 1991, 1992, 1999; French & 

Chater, 2002; Kortge, 1990; McCloskey & Cohen, 1989; Ratcliff, 1990; Robins 1995; 

Robins & McCallum, 1998; Sharkey & Sharkey, 1995). There has been no 

comparable work for self-organising learning systems, in spite of their increasing 

prevalence in models of cognitive development (Li, Farkas, & MacWhinney, 2004; 

O’Reilly & Johnson, 1994; Oliver, Johnson, Karmiloff-Smith & Pennington, 2000; 

Westermann & Miranda, 2002, 2004). Given that some authors view self-organising 
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systems and error-driven associative systems as the two principal experience-

dependent architectures within the brain (O’Reilly, 1998), this is a notable omission.  

 

Critical Periods 

The notion of a critical period was used in the context of language acquisition by 

Lennenberg (1967) to refer to a limited duration in development during which 

children are particularly sensitive to the effects of experience. Latterly, alternate terms 

have been employed such as sensitive or optimal period, which are more neutral as to 

whether the period of plasticity comes to a complete close (see Birdsong, 2005; 

Johnson, 2005; Knudsen, 2004). The idea that early experiences are particularly 

influential and that they may even have irreversible effects on behaviour has been 

invoked in many examples of animal and human development, including filial 

imprinting in ducks and chicks, early visual development in several species, song 

learning in birds, and language acquisition in humans (Brainard & Doupe, 2002; 

Doupe & Kuhl, 1999; Hubel & Weisel, 1963; Johnson & Newport 1989, 1991; 

Lorenz, 1958; Senghas, Kita, & Özyürek 2004). To take a well-known example, in 

second language acquisition, children are better learners than adults in terms of their 

ultimate proficiency (Johnson & Newport 1989, 1991). This effect appears to be 

related to the age at which second language learning commences rather than degree of 

exposure, implicating differential contributions of early and late experiences. The 

exact function linking age of acquisition and ultimate attainment is still debated (e.g., 

Birdsong; 2005; DeKeyser & Larson-Hall, 2005). 
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At the neurobiological level, neuroplasticity is central to critical period 

phenomena.1 Present data suggest that the termination of critical periods for more 

basic functions occurs prior to the opening of critical periods in higher-level systems 

(Jones, 2000). In this way, the development of low-level systems can have a lasting 

impact upon the opportunities for subsequent higher-level development. Although the 

profiles of plasticity that regulate critical periods may vary across brain systems 

(Uylings, 2005), there is a general trend for plasticity to decrease with increasing age 

(Hensch, 2004). As plasticity reduces, the ability of the system to undergo large-scale, 

speeded change also diminishes, thereby safeguarding existing information. 

The mechanistic basis of critical periods has been studied extensively through 

the use of both connectionist-style error-driven and self-organising learning systems. 

These models have explored early visual development (e.g., Miller, Keller & Stryker, 

1989), age-of-acquisition effects in language (Lambon Ralph & Ehsan, in press; Ellis 

& Lambon Ralph, 2000; Li, Farkas, & MacWhinney, 2004; Zevin & Seidenberg, 

2002), and recovery after brain damage (Marchman, 1997). In error-driven 

connectionist networks, the privileged status of early learning has been explained with 

reference to the idea of entrenchment, where large connection weights produced by 

early training then compromise the ability of the network to alter its structure to 

accommodate new information (Ellis & Lambon Ralph 2000, Zevin & Seidenberg, 

2002, Seidenberg & Zevin, 2006). However, the prominence of catastrophic 

interference effects for this type of network implies that other factors – such as the 

similarity between old and new knowledge, the resource levels of the network, and 

                                                 
1 In what follows, for brevity we will sometimes refer simply to ‘critical period’ effects, by which we 
intend the combined phenomenon of critical / sensitive / optimal periods in development. Debates on 
the distinctions between these terms are not directly relevant here, other than to note that all imply a 
non-linear relationship between age and functional plasticity in which there is a reduction in plasticity 
over time. The terms differ in the exact shape of the function to which they refer and the residual level 
of functional plasticity when the period has closed. 
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continued training on old knowledge while new knowledge is introduced – must all 

play a role for early training to exert a greater influence than later training on endstate 

performance (Lambon Ralph & Ehsan, in press; Thomas & Johnson, 2006). 

Self-organising feature maps fall into two camps, depending on whether their 

implementation involves dynamic changes to the model’s parameters. Kohonen’s 

(1982) algorithm uses two phases of training to achieve a topographic organisation 

across the network’s output layer that reflects the similarity structure of the input 

domain. In the organisation or ordering phase, the network is trained with a high 

learning rate (a parameter that modulates the size of weight change) and a large 

neighbourhood size (a parameter that modulates the extent of weight change across 

the map in response to each input pattern). These parameter settings allow the 

network to achieve an initial rough organisation of the appropriate topology. In the 

second convergence or tuning phase, the learning rate and neighbourhood size 

parameters are reduced to fine-tune the feature map and captured more detailed 

distinctions in the input set. The two phases are sometimes implemented by 

continuously declining functions that asymptote to non-zero values. We will refer to 

this configuration as the dynamic parameter implementation of the self-organising 

feature map. Most saliently for this implementation, the functional plasticity of the 

system reduces by definition. The models will necessarily exhibit a sensitive period 

because this is the mechanism by which they achieve good topographic organisation 

(Kohonen, 1995; Li, et al., 2004; Miikkulainen, 1997; Thomas & Richardson, 2006). 

Some implementations of self-organising feature maps keep their parameters 

fixed across training but still report evidence for critical periods (e.g., for imprinting 

in chicks: O’Reilly & Johnson, 1994; for adult Japanese speakers attempting to learn 

the English /l/-/r/ phoneme contrast: McClelland et al., 1999). In the O’Reilly and 
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Johnson model, the critical period effect appears to be a consequence of input 

similarity and limited computational resources, while in the McClelland et al. model, 

it is a consequence of input similarity and assimilation in the output layer (see 

Thomas & Johnson, 2006, for discussion). However, both these models are 

characterised by highly simplified training sets in which little is demanded of the 

network in terms of detailed topographic organisation. It is not clear that their 

behaviour will generalise to more complex training sets. 

In sum, much more work has addressed critical periods in self-organising 

feature maps than catastrophic interference, but even for critical periods the relative 

importance of several factors remains unclear. These include whether parameters are 

dynamic or fixed across training, the similarity between old and new information, and 

the level of resources available in the model to accommodate new information. We 

therefore set out to address these issues in a set of computer simulations. 

 

Simulations 

Design 

We began by selecting a reasonably complex cognitive domain drawn from 

neuropsychology to assess both catastrophic interference and critical period effects in 

self-organising feature maps (henceforth SOFMs). The training set comprised feature-

based representations of exemplars from eight semantic categories (vehicles, tools, 

utensils, fruit, vegetables, dairy produce, animals and humans). These were based on 

vectors constructed by Small et al. (1996) to simulate patient performance in 

neuropsychological tests of semantic deficits. We split the training set into two halves 

that would correspond to early and late training experiences. The split was made in 

two ways. We either: (1) split each category in half, thereby producing two similar 
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subsets; or (2) assigned living categories to one half and non-living categories to the 

other half, thereby producing two different subsets. 

Each network was first exposed to the early set and at a variable point across 

its training, a switch was made to the late set. We avoided interleaving training sets to 

maximise the effects of variability in the environment. We then evaluated the quality 

of the SOFM at the end of training. To assess catastrophic interference, we focused 

on performance on the early training set – had the early acquired knowledge been 

overwritten by the later acquired knowledge? To assess critical periods, we focused 

on performance on the late training set – was the network’s ability to learn the late set 

compromised for switches that occurred at increasingly greater ‘ages’ of the network? 

Based on our review of the literature, we explored whether three additional factors 

modulated these effects: 

(1) SOFMs with dynamic parameters versus fixed parameters: We employed the 

standard Kohonen (1982) method of reducing neighbourhood and learning rate 

across training and contrasted it with a condition in which these two 

parameters were fixed at intermediate, compromise values throughout training. 

Can topographically well-organised maps only be achieved by reducing 

plasticity across training? If so, the existence of such maps in the brain might 

necessitate critical periods. 

(2) Resource levels: the capacity of the SOFM may be important for determining 

its flexibility to changes in the training environment. Intuitively, if there is no 

space left in a system when the environment changes, the system must either 

be compromised in learning the new or it must sacrifice the old. This 

manipulation either gave the map sufficient resources to employ a separate 
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output unit for each pattern in the (combined) training set (resource rich), or 

reduced this level to approximately 25% capacity (limited resource). 

(3) Similarity: depending on the way in which the original training set was split, 

there was either high similarity or low similarity between the early and late 

training environment. If early knowledge and late knowledge are similar, will 

interference be eliminated, since old knowledge generalises to new? 

Conversely, under conditions of a radical change in training environment, will 

the effects of catastrophic interference outweigh those of the critical period? 

Training sets 

The training patterns were 185 exemplars derived from 58 prototypical concepts that 

spanned 8 semantic categories: vehicles, tools, utensils, fruit, vegetables, dairy 

produce, animals and humans (adapted from the set used by Small et al., 1996). Each 

exemplar was encoded according to the presence or absence of 154 meaningful 

semantic features (such as “is_green” and “is_food”), where the presence or absence 

of a particular feature was indicated by an activation value of 1 or 0 respectively. On 

average, each exemplar activated 19 semantic features. Four training sets were 

constructed from the 185 exemplars, arranged as two pairs. There were no repetitions 

of exemplars across pairs and each set consisted of a similar quantity of items. Similar 

training sets A and B consisted of 92 and 93 exemplars, respectively, and comprised 

half the exemplars of each category. Average vectors for the two sets were computed.  

The angle between these two vectors can be used as a measure of their similarity. The 

angle between the mean vectors was 10°, where 0° indicates complete similarity and 

90° indicates entirely dissimilar or ‘orthogonal’ representations. Different training sets 

A and B consisted of 98 and 87 exemplars, respectively. Set A consisted of exemplars 

from the living categories (humans, animals, fruit, and vegetables) while set B 
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consisted of exemplars from non-living categories (dairy produce, tools, utensils and 

vehicles). The angle between the mean vectors for the two different sets was 83°.  

Architecture and Algorithm 

We employed 2-dimensional SOFMs with a hexagonally arranged topology and 154 

input units. The input layer was fully connected to the output layer. The output layer 

for resource rich maps consisted of 196 units arranged in a 14x14 array. The output 

layer for limited resource maps consisted of 49 units arranged in a 7x7 array. In these 

networks, during training, each input pattern produces a most-activated or winning 

output unit on the map. The activation ui of each unit on the output layer is calculated 

via the summed product of the activations ai of the input units that are connected to 

this unit and the strengths wi of those connections: 

∑=
i

iii wau         [1] 

The winning output unit for a given input pattern is the unit with the highest summed 

product. Some algorithms implement the selection of the winning output unit via a 

competitive process in the output layer, involving mutually excitatory short-range 

intra-layer connections, inhibitory long-range intra-layer connections, and cycling 

activation. In the current implementation, for simplicity the most active output unit is 

nominated as the winner. The winning unit updates its weights to the input layer, as 

do the units that surround the winner as a function of their distance from it. The 

distance is calculated using the Euclidean distance measure. Weights wiu between 

input units i and winning unit u are updated via the following equation: 

( ) ( )[ ])()()1( twtattwtw iuiiuiu −+=+ α     [2] 

where t denotes time, ( )tα is the learning rate at time t (see below) and [ ])()( twta iui −  

is the difference between the activation of the input unit i and the current weight value 

(Kohonen, 1995). Output units n that fall within the neighbourhood of winning output 
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unit u, as determined by the neighbourhood function (see below), also update their 

weights but now modified by a factor of 0.5 (Kohonen, 1995) so that: 

( ) ( )[ ])()(5.0)1( twtattwtw iniinin −×+=+ α     [3] 

The learning rate and neighbourhood size were determined as follows. For the 

fixed parameters condition, the neighbourhood size was set to 2 and the learning rate 

to 0.7. These values were held constant throughout training. For the dynamic 

parameters condition, the two parameters decreased as a function of the number of 

training patterns presented. During the organisational phase of the map, which ran 

from the onset of training for 250 epochs (where 1 epoch = presentation of all the 

patterns in the training set), the learning rate was set at an initial value of 0.8 and 

decreased to a level of 0.2 by the start of the tuning phase (after 250 epochs). The 

exact formula for computing ( )tα is shown in the Appendix A. The neighbourhood 

size was set at an initial value of 18 and decreased to a level of 1 by the start of the 

tuning phase. The exact function determining the neighbourhood size is included in 

Appendix A. The parameter profiles for fixed and dynamic conditions are shown in 

Figure 1. 

=================== 
Insert Figure 1 about here 
=================== 

 

Map evaluation 

Maps were evaluated using two methods. For visualisation, colour-coded maps were 

created reflecting the category exemplars that activated each output unit. In order to 

generate these plots, we employed a cluster analysis of the similarity structure of all 

training patterns to assign a colour value to each exemplar. This colour value was then 

allocated to the winning output unit for that pattern. If the same unit was activated by 
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more than one pattern, the colour values for that unit were averaged and the size of 

the unit plotted was increased (Thomas & Richardson, 2006). 

Three quantitative metrics were used to assess map quality, based on those 

used by Oliver et al. (2000) in their simulations of typical and atypical SOFM 

development. The metrics were: unit activity, discrimination, and organisation. First, 

unit activity acted as a basic indicator of the proportion of the map that responded to 

the training set. Formally, it was calculated as the total number of different winning 

output units for the patterns in the current training set. The discrimination metric was 

used to indicate the granularity of categorisation available in map space. It was 

calculated as the number of different winning units for a given category divided by 

the number of exemplars in that category, giving a proportion between 0 and 1. An 

average discrimination value was then calculated for the categories in a training set. 

Low values indicate coarse granularity and poor discrimination, with many different 

exemplars activating the same output unit. Higher values indicate fine-grained 

granularity and a good level of discrimination between exemplars. This measure was 

conceptually independent of the topographic layout of the clustering in map space. 

Topographic layout was evaluated using an organisation metric. Under the hexagonal 

scheme, each output unit is surrounded by six immediate neighbours. If a neighbour 

was solely activated by exemplars of the same category, it contributed a score of 1 to 

the target unit’s organisational score, for a possible total of 6. Where a neighbouring 

unit responded to exemplars from more than one category, the unit was classified 

according to the category for which it was maximally active. A target unit’s total 

score was divided by 6 to generate a proportion and the mean proportions of all 

winning units across the map then calculated, resulting in a value between 0 and 1. A 

value near 0 indicates that very few neighbouring units classify exemplars from the 
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same category and therefore that the map has poor topographic organisation. 

Conversely, a value near 1 indicates that the majority of neighbours classify 

exemplars from the same category and that there is good topographic organisation. 

Together, these three metrics provide the opportunity to identify map quality 

over several dimensions. They allow for the possibility that map characteristics may 

dissociate. Thus a map could, in principle, show good discrimination between 

exemplars but poor organisation, or it could show good organisation but poor 

discrimination between exemplars. 

Training and testing regimes 

Three sets of simulations were run. The first established the baseline development of 

maps for the split pattern sets when trained in isolation, against which the effects of 

interference or reduced plasticity could be assessed. The second set evaluated 

catastrophic interference effects and the third critical period effects. In each case, 

simulations followed a 2 x 2 x 2 design, with factors of parameters (fixed vs. 

dynamic), resources (resource rich vs. limited resources), and early-late training set 

similarity (similar vs. different). Simulations were counter-balanced across the split 

training sets, with A serving as the early set and B the late set or B as the early set and 

A as the late set. Illustrated data are averaged over six replications with different 

random seeds determining initial weight randomisation and random order of pattern 

presentation. All figures include standard errors of these means. 

(i) Baseline development for single training sets: The developmental profile of 

fixed parameter and dynamic parameter maps was established by training maps on 

each of the four training sets (A and B similar; A and B different). Performance was 

assessed at 5, 50, 100, 250, 400, 550, 700, 850 and 1000 epochs. For the dynamic 
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parameters condition, the organisation phase ran from 0 to 250 epochs and the tuning 

phase from 250 to 1000 epochs. 

(ii) Catastrophic interference effects: The network was initially trained on the 

early set. Training was then switched to the late set. Performance on the early set was 

assessed at the end of training. Switches took place at 5, 50, 250, 400, 550, 700, or 

850 epochs of training. Note that two methods could be used determine the ‘end’ of 

training. One could assess early-set performance at 1000 epochs, so using a fixed total 

amount of training. However, this means that for switches occurring later in training, 

there is less opportunity for catastrophic interference to take place (i.e., only 150 

epochs for a switch occurring at 850 epochs, compared to 995 epochs for a switch 

occurring after 5 epochs). Alternatively, one could assess early-set performance 

following a fixed period of 1000 epochs following the switch, so for a switch at 850 

epochs, network performance would be assessed at 1850 epochs. In practice, 

however, the effects of a switch stabilised relatively quickly, and therefore even the 

latest switch provided time for the effects of catastrophic interference to stabilise. 

Although we ran all simulations using both methods, we report here only the data for 

performance after 1000 epochs (first method), since the results are the same for both. 

(iii) Critical period effects: The same method was used as in (ii) but 

performance was instead assessed at the end of training for the late set. Switches once 

more occurred after 5, 50, 250, 400, 550, 700 or 850 epochs of training on the early 

set. 

 

 

Results 

(i) Normal development of fixed and dynamic parameter maps 
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The typical developmental profiles of fixed parameter (FP) and dynamic parameter 

(DP) maps are displayed with SOFM plots in Figure 2. These illustrate the emerging 

classification for one of the training sets (different set B: non-living categories). Both 

FP and DP maps developed topographically organised representations, marked by 

segregated areas of colour. Figure 2 indicates that the FP maps developed their 

representations more quickly but produced both fewer activated units and a lower 

level of exemplar discrimination in the endstate. By contrast, the DP maps developed 

more slowly but ultimately recruited more units and reached a higher level of 

discrimination. The quantitative metrics in Figure 3 confirm this impression. Note that 

the faster development of the FP map actually occurred when the DP map had higher 

plasticity (in terms of the learning rate and neighbourhood parameters). This is 

because the high plasticity of the DP map initially makes it unstable. 

A reduction in map resources naturally resulted in fewer active units and 

therefore worse discrimination (see Thomas & Richardson, 2006). However, the 

relationship between FP and DP maps remained the same. 

====================== 
Insert Figures 2 & 3 about here 
====================== 

 

For the unit activity and discrimination metrics, the results were almost 

identical whether the similar and different subsets were used. This is despite the fact 

that the different subsets contained only 4 categories compared to the 8 categories of 

similar subsets. In both cases, map resources were used to optimise discrimination 

between the exemplars present in the training set. The results were the same because 

for the different subsets, discrimination between exemplars increased to take up the 

available resources. By contrast, the organisation metric was affected by the choice of 

subset. This is because, by definition, the metric assesses how many neighbouring 
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units represent exemplars from the same category. Any two units are more likely to 

represent exemplars from the same category for the different subsets because there are 

fewer categories. However, the similarity effect was dependent both on parameter 

condition and resource level. For the DP network with plentiful resources, exemplar 

discrimination eventually became sufficiently fine-grained to reach the same level of 

organisation for both similar and different subsets. 

We now turn to consider the effects of a non-stationary training environment. 

 

(ii) Catastrophic interference effects 

Figure 4 depicts endstate performance on the early training set for conditions in which 

training switches to the late set after a certain number of epochs compared with 

endstate performance when no switch took place (NS). Interference effects will be 

evidenced by poor endstate performance on the early set. 

 The FP networks with rich resources demonstrated a drop in early-set 

performance across all three metrics, irrespective of how late the shift occurred during 

training. These networks exhibited interference effects consistent with their continued 

level of plasticity. The interference effects were greater between different subsets than 

similar subsets, in line with equivalent findings from error-driven networks. In terms 

of unit activity and discrimination, the limited-resource FP networks only showed 

interference effects for switches between different subsets. The map solution of the 

early-set adequately generalised to the late-set for the level of discrimination 

achievable and so no reorganisation was necessary. Similarity effects were 

particularly evident in the organisation metric for the limited-resources network, in 

which the competition for representational resources was maximised. The outcome of 

this competition depended to some extent on chance patterns of map organisation, 
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thereby increasing the variability of these data. In contrast, rich resources mitigated 

the effect of similarity on organisation. Spare resources were now available to 

accommodate the new knowledge. 

=================== 
Insert Figure 4 about here 
=================== 

 Consistent with their shift in emphasis from plasticity to stability across 

training, the DP networks exhibited interference predominantly for switches that 

occurred in the earlier parts of training. Once more the different subsets produced 

maximal interference. Similar subsets minimised the effects of the interference for 

early switches, since the organisation fashion by the new knowledge generalises to the 

consistent old knowledge. Two further points are of note. First, the DP network’s 

ability to preserve its old knowledge after a late occurring switch between different 

subsets was sensitive to map resources: the S-shaped curves in unit activity and 

discrimination are present only in the resource-rich maps; for limited-resource maps, 

such a switch between different subsets always caused interference. Second, the rich-

resource maps always experienced some interference irrespective of how late the 

switch occurred. Unless learning is de-activated, these systems cannot ensure 

complete stability in the face of a non-stationary environment. 

 In sum, conditions that maximised the necessity of change (a switch between 

different subsets), the opportunity for change (elevated intrinsic plasticity) or the 

impact of change (competition for limited resources) all led to interference effects in 

SOFMs. Where old knowledge generalised to new knowledge or where plasticity was 

sacrificed, stability prevailed. Could the interference be called ‘catastrophic’? In the 

worst case, a baseline exemplar discrimination of 76% in the endstate of the non-
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switch condition fell to 18% with an early switch in the DP network. However, in 

many cases, the impact was much milder than this. 

 
(iii) Critical period effects 

Figure 5 depicts endstate performance on the late set for conditions in which training 

switched to this set increasingly further into the network’s development. These data 

are compared with endstate performance when the network was trained on the same 

set from the beginning. A sensitive period would be demonstrated by increasingly 

poorer performance the later into the network’s development that the training begins; 

a critical period would be demonstrated by a point in the network’s development after 

which the late set could not be learned at all. 

 For the FP networks, the point at which training commenced on the late set 

had no effect at all on endstate levels of unit activity or discrimination. Resource 

levels and similarity did not modulate this pattern. In contrast, the DP networks 

produced a sensitive period in line with the shift between organisational and tuning 

phases, that is, driven by the internal parameters of the system. Shifts to the late set 

occurring up until 100 epochs predicted an outcome similar to training on the late set 

from the beginning (e.g., around 75% discrimination in the resource-rich network). 

For shifts from 250 epochs onwards, the prognosis was much poorer, but importantly 

this pattern was strongly modulated by similarity. For the similar subsets, the latest 

switches only produced a decline to 62% discrimination. For the different subsets, the 

decline was much larger, to 25%. 

Some degree of learning was always possible on the late set, suggesting use of 

the strong sense of ‘critical period’ is not warranted for these networks. Nevertheless, 

the important finding is that the age-of-acquisition effects depended as much on 

similarity between old and new knowledge as intrinsic parameter settings.  For unit 
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activation and discrimination, the same kind of pattern was found in limited-resource 

networks. However, for both resource-rich and limited-resource networks, the 

sensitive period profile was not replicated in the organisation metric, which was noisy 

but remained approximately level for switches at different epochs. 

=================== 
Insert Figure 5 about here 
=================== 

 These results capture the outcome of a non-stationary environment at the end 

of the fixed training period, but they do not reveal the dynamics of change when a 

switch occurs. Figure 6 illustrates the process of reorganisation triggered by a change 

in training set for two conditions. Figure 6(i) depicts a representative map for a late 

switch between similar subsets occurring at 700 epochs in the DP network with rich 

resources. By this point, the learning rate and neighbourhood parameters are at a level 

that limits subsequent change. Although the early and late subsets share no common 

training patterns, each nevertheless contains different exemplars from the same 

categories. The map produced by the early set is therefore likely to be useful for the 

late set. Figure 6(i) shows that following the switch there is a drop in discrimination 

(indicated by an increase in the size of the coloured dots). This is because distinctions 

between the exemplars of new knowledge are not captured. For example, taking the 

category ‘vegetables’, while the old knowledge may have included the distinction 

between lettuce, carrot, and potato by activating separate output units for each, the 

new knowledge now contains celery, parsnip, and turnip, and these are initially 

conflated into a single output unit. However, it only takes fine-tuning over subsequent 

exemplars to learn these distinctions. Such cases are circled in Figure 6(i). 

 Figure 6(ii) illustrates the case of a late switch between different subsets (from 

non-living to living categories), again for a DP network with rich resources. Given 
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that there is such limited overlap between old and new knowledge, one might question 

whether the representations developed by the early training set will be of any use in 

discriminating between patterns in the late training set. Figure 6(ii) shows that, 

without any further training, some discrimination is immediately available, albeit at a 

very coarse level. This is because the different subsets are not fully orthogonal, so that 

a single overlapping feature (such as size) used in discriminating the non-living 

categories of tools, utensils, dairy produce, and vehicles can then be employed to 

generate rough distinctions between the living categories of vegetables, fruit, animals, 

and humans. However, in line with the reduced plasticity of the DP network, few 

further distinctions can then be learned by the residual fine-tuning capacity of the 

system. 

=================== 
Insert Figure 6 about here 
=================== 

 

Discussion 

Both self-organising and error-driven connectionist networks have been widely used 

to study mechanisms of cognitive development (Elman et al., 1996; Mareschal et al., 

2007). While self-organising networks have been linked to explanations of critical or 

sensitive periods in development (Li, Farkas, & MacWhinney, 2004; McClelland et 

al., 1999; O’Reilly & Johnson, 1994), error-driven networks have more often been 

associated with catastrophic interference effects where late-learned knowledge 

overwrites early-learned knowledge (French, 1999). In the current paper, we took a 

standard implementation of self-organised feature maps (Kohonen, 1995) and trained 

networks on a pattern set drawn from research into semantic deficits in cognitive 

neuropsychology (Small et al., 1999), with the aim of evaluating the factors that 
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mediate critical/sensitive period and interference effects in these systems. Our results 

demonstrated the following. 

 Two variations of SOFM produced topographically organised representations 

of the categories in the training set. In the more traditional variation, the parameters of 

learning rate and neighbourhood size were reduced across training.2 In this variation, 

learning was initially slow but eventually produced a high level of discrimination and 

organisation. These networks demonstrated sensitive periods in development 

favouring the influence of early learning, with limited interference effects for changes 

in training occurring beyond this period. If a switch occurred within the sensitive 

period, the new knowledge was able to replace the old. However, after this 

replacement there was residual evidence that an early switch had taken place. This 

took the form of the lower level of unit activity and discrimination that was ultimately 

attainable. These results are perhaps analogous to functional imaging data from Pallier 

et al. (2003) where Korean-born children who were adopted into French families at an 

early age and who showed loss of Korean when tested as adults nevertheless still 

exhibited depressed activation levels when listening to French when compared to 

native French speakers. 

In the second SOFM variation, the parameters of learning rate and 

neighbourhood size were fixed across training. The network learned very quickly but 

its final levels of discrimination and organisation were poorer than the first variation. 

However, there was no indication of critical or sensitive periods in these networks; 

instead, interference effects were the salient characteristic. The clear inference is that 

                                                 
2 This implementation does not necessarily imply a reduction in plasticity simply as a function of age 
(maturation). In the algorithm, the parameters reduce as a function of the number of training patterns 
encountered, that is, the level of experience (see Appendix A). If the rate of experience can vary, the 
implementation is consistent with the idea that experience itself causes the closing of sensitive periods 
(Johnson, 2005). If experiences occur at a constant rate, the function is equivalent to a maturational 
reduction in plasticity. 



 25

the presence of topographic organisation does not necessarily imply a system that will 

show critical/sensitive periods across development. The intrinsic properties of the 

learning device (i.e., its parameterisation) are crucial in determining the trade-off 

between stability and plasticity. The simulations suggest a further trade-off: fast 

settling systems may retain plasticity at the expense of detail; higher performing 

systems may take longer to develop and involve sensitive periods. It is possible that 

different brain systems use the developing maps with different settings – fast, 

approximate and permanently plastic, versus slow, detailed and losing plasticity. 

 Research on catastrophic interference effects in error-driven connectionist 

networks pointed to the importance of the similarity between old and new knowledge 

(e.g., McCrae & Hetherington, 1993). The current simulations extended this work to 

self-organising systems with comparable results: where a high degree of consistency 

existed between old and new knowledge, both the effects of critical periods and 

interference were attenuated; where the old and new knowledge were very different, 

critical period effects were maximised in the dynamic parameters network and 

interference effects were maximised in the fixed parameters network. The issue of 

similarity between old and new knowledge has been highlighted as one of the factors 

in the success of adults learning a second language beyond the sensitive period (see 

Hernandez, Li, & MacWhinney, 2005, for a discussion of relevant literature in the 

context of SOFM models of bilingual acquisition). 

 Since both critical period effects and interference effects relate to a 

competition for representational resources, we also investigated whether such effects 

would be sensitive to the overall level of resources. A self-organising network with 

fewer resources resulted in poorer discrimination between exemplars (see Thomas & 

Richardson, 2006, for further work). Reduced resources had no implications for 
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critical period effects in discrimination. However, resources did exaggerate the effects 

of similarity on interference effects. With limited resources, a late switch to a 

different training set caused reduced unit activity and loss of discrimination for 

previously acquired knowledge – even in the dynamic parameters network where 

plasticity should have been attenuated. The implications of individual variation in 

neural resources for forming topographically organised systems are as yet unclear. For 

example, human have studies confirmed the presence of variation in the size of 

cortical areas without finding correlations in behavioural performance (Finlay, 

Cheung, & Darlington, 2005). Studies of brain damage hint at a minimal level of 

resources necessary for cognitive development through the presence of ‘crowding 

effects’ after unilateral damage in childhood, in which there is a general lowering of 

IQ without marked specificity of behavioural deficits (e.g., Huttenlocher, 2002). And 

animal studies indicate that at the neural level, the result of reducing cortical resources 

prenatally without disrupting cortical input is the emergence of the same broad 

regions of functional specialisation (visual, motor, somatosensory) but with reduced 

discrimination, i.e., more neurons responding to more than one modality (Huffman et 

al., 1999). The current simulations point to a further implication of resources for the 

stability of representations under conditions of a non-stationary environment. 

 We finish by briefly considering two further issues. First, we consider the 

generality of the current simulation findings. Second, we consider why it should be 

important to develop good topographically organised representations, over and above 

representations that simply offer good discrimination. 

 One limitation of the current findings is the extent to which they are general 

across different problem sets and self-organising network models. With regard to 

problem set, we employed a relatively rich training set drawn from work on the 
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modelling of neuropsychological deficits. Some self-organising cognitive models 

have employed much simpler representations, such as a small number of bars or blobs 

falling across an input retina. These input sets place a weaker requirement on the 

algorithm to develop a richly structured topographic organisation, but they do allow 

for more extreme manipulations of similarity, including completely orthogonal input 

patterns (e.g., Oliver et al., 2000; O’Reilly & Johnson 1994; McClelland et al., 1999). 

For reasons of practicality, we took the exaggerated case of a sudden and absolute 

change in training set. Additional work would be necessary to assess the extent to 

which interleaving old and new knowledge might alleviate interference effects, in line 

with the findings from work on error-driven networks. 

In terms of generality across models, simulations of self-organising feature 

maps can differ in the details of their algorithms, and it is the terms of the algorithm 

that ultimately specify the plasticity profile of a learning system (Thomas & Johnson, 

2006). Some models employ weight decay or normalisation in their learning 

algorithms, to keep the total weight size constant; other models provide the units of 

the output layer with threshold functions; other models implement a competitive 

process to select the winning output unit for each input pattern via intra-layer 

connections, and include adaptive changes to these weights as part of learning; other 

models allow the recruitment of new output units across training for very novel inputs 

and include bi-directional connections between input and output layers than can 

change the similarity structure of the input (see, e.g., Grossberg, 1987; Li, et al., 2004; 

Miller et al., 1989; Oliver et al., 2000; O’Reilly & Johnson 1994). Notably, not all 

models use dynamic parameter changes across training, instead achieving their 

topographic organisation with fixed parameters. However, these fixed parameter 
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networks also tend to be the models with less richly structured training sets placing 

weaker demands on global organisation. 

How significantly would such additions alter the balance between critical 

period and interference effects? Further simulation work is required to answer this 

question, but we can anticipate at least two differences that would increase the 

probability of critical period effects and attenuate interference effects. First, if the 

decay of unused weights between input and output layers ever permitted weight size 

to drop to zero (effectively pruning unused connections), then initially unused areas of 

the input space would lose the ability ever to activate the output layer. Relatedly, if 

output units have fixed thresholds and weights decay (or are weakened by 

normalisation as other weights strengthen), unused areas of the input space may no 

longer be able to propagate enough activation to push output units above threshold. 

Alternatively, intra-layer competitive processes on the output layer may result in 

assimilation effects, whereby novel inputs that are highly similar to existing 

exemplars simply serve to activate the output unit for that exemplar and therefore fail 

to trigger adaptation in the network (see McClelland et al., 1999, for simulation work 

related to adult Japanese learners of English and the /l/-/r/ contrast). These two cases 

are illustrated in Figure 7. 

=================== 
Insert Figure 7 about here 
=================== 

Turning to the second issue, Figures 4 and 5 indicated that switches in training 

set played a stronger role in modulating the unit activation and discrimination metrics 

than the organisation metric, especially for critical periods. This led us to consider 

what might be the importance of good topographic organisation for driving behaviour, 

over and above a highly activated map with good discrimination between exemplars 
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in the training set. While there may be metabolic and signalling advantages of having 

units that represent the same information close together on a neural sheet, are there 

necessarily computational advantages? It has certainly been argued in the literature 

that the development of self-organising feature maps with poor topology may result in 

developmental disorders (Oliver et al., 2000) and even that maps that are malformed 

in a certain way could lead to symptoms of autism (Gustaffson, 1997). 

The impact of disruptions of topology (independent of discrimination) would 

seem to depend on certain assumptions about the downstream system that the map is 

driving. In particular, bad topology will disrupt behaviour if (a) the downstream 

system also has a topographic organisation and (b) units in the downstream system 

have receptive fields that only cover a limited region of the map. Such an architecture 

would mean that each downstream unit could not be driven by map units with widely 

disparate locations. The second assumption is problematic, however. Unless the map 

locations of relevant categories could be anticipated in advance, how would the 

downstream units know where to position their receptive fields on the map? In our 

simulations, while the relative organisation of categories was predictable (e.g., 

animals would fall next to humans), the absolute location was not (e.g., whether 

animals were represented top-left or bottom-right).  

The implication of such unpredictability is that the receptive fields of the 

downstream system could not be pre-specified but would have to be learned. 

Downstream systems must co-develop with upstream systems. Under a simple version 

of this process, the SOFM and the downstream system would begin by being fully 

connected. As the topology of each was established, receptive fields would emerge as 

the outcome of a regressive developmental process (illustrated in Figure 8). If this is 

correct, whether or not a map with non-optimal topology manifests in a disorder 
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would depend on the severity of the disruption to the upstream map and the point 

during development at which the disruption took place. As importantly, it would also 

depend on the degree of compensation available in the downstream map and the 

connectivity between the two maps, requiring us also to consider the developmental 

trajectory and plasticity conditions of that downstream system3. 

=================== 
Insert Figure 8 about here 
=================== 

In sum, although we can evaluate the quality of SOFMs in isolation, the 

relevance of the metrics is ultimately dependent on the systems to which the map is 

connected and the processes it is driving. We have demonstrated that the impact of a 

non-stationary environment on a SOFM is contingent on its plasticity conditions, as 

well as factors such as similarity and resources. But the impact on behaviour of a non-

stationary environment is additionally contingent on the plasticity conditions that 

prevail in the other systems to which it is connected, as well as the nature of the 

connectivity between them. 

Conclusion 

For a self-organising feature map in a non-stationary environment, internal parameter 

settings, available representational resources, and the similarity between old and new 

knowledge all influence the stability of acquired knowledge and the sensitivity of the 

system to change. Topographically organised systems are possible in networks that do 

not exhibit critical or sensitive periods, but maps optimised for high discrimination, 

                                                 
3 Similar arguments could be made regarding the optimal setting of the discrimination metric. Coarse 
representations may be better for extracting broad categories, while exemplar-based representations 
offer better old-new discrimination. A downstream system with wide receptive fields would conflate 
neighbouring units into a single categorical response, while one with narrow receptive fields could be 
exemplar driven. (If the width of the receptive fields were modulated by attention, both responses 
would be available). The discrimination metric therefore has to be considered both in the context of the 
downstream system and the demands of the task. 
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and indeed those most widely used in models of cognitive development, do 

necessitate reducing sensitivity to change with increasing experience. 
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Appendix A 

Dynamic parameter changes over learning in the SOFM (Kohonen, 1982, 1995) 

 

Organisation phase 

The learning rate is given by 

( )( ) lrlrlrproportionlr min_min_max_ +−×=   [4] 

where lr is the learning rate, max_lr is the highest learning rate at the start of the 

organisation phase and min_lr is the tuning phase learning rate. Proportion is given 

by 

( )
orgpats

curptotproportion 11 −
−=      [5] 

where curptot is the current total of pattern presentations and orgpats is the total 

number of pattern presentations in the organisation phase. 

The neighbourhood distance is given by 

( )( ) ndndproportionnd min_1max_ +−×=    [6] 

where min_nd is minimum neighbourhood distance and max_nd is maximum 

neighbourhood distance. 

 

Tuning phase 

The learning rate and neighbourhood distance in the tuning phase are given by 
 

( )
( )1

min_
−

×
=

curptot
orgpatslrlr      [7]  

 ndnd min_=        [8] 
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Figure Captions 

Figure 1: Profile of parameter changes over learning that control functional plasticity 

in the SOFM for the (a) fixed parameter and (b) dynamic parameter conditions. 

 

Figure 2: SOFM plots illustrating the development of semantic categories for non-

living categories for (a) fixed and (b) dynamic parameter maps. Maps with reducing 

learning rate and neighbourhood settings establish representations in map space more 

slowly than fixed parameter maps but produce maps with superior final organisation 

and discrimination. 

 

Figure 3: Normal development: Metric results track changes in map quality over 

learning for (a) resource-rich maps and (b) limited-resource maps, for both fixed and 

dynamic parameter conditions. 

 

Figure 4: Interference effects for the no-longer trained pattern set. Metric results show 

performance at the end of the normal period of training, for switches occurring at 

different points in training. Map quality was stable by 1000 epochs of training even 

for late occurring switches. (NS = no-switch, i.e., for training on the early set in 

isolation). 

 

Figure 5: Critical/sensitive period effects for the newly introduced pattern set. Metric 

results show performance at the end of the normal period of training, for switches 

occurring at different points in training. Map quality was stable by 1000 epochs of 

training. (NS = no-switch, i.e., for training on the late set in isolation). 
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Figure 6: Map reorganisation immediately following a change in training set. 

Highlighted regions show the initial conflation following by subsequent 

discrimination of exemplars in the new training set. (i) Resource-rich dynamic 

parameter map: late switch between similar subsets. (ii) Resource-rich dynamic 

parameter map: late switch between different subsets. 

 

Figure 7: Additional algorithmic assumptions that could affect the on-going plasticity 

of a SOFM: (i) Loss of signal via weight normalisation / decay or via fixed output unit 

thresholds. After training on category A, there is loss of signal for novel category B. 

(ii) Assimilation of novel inputs into existing categories via intra-layer competition. 

After training on category A, novel category B (but not novel category C) is 

assimilated into category A and so does not trigger reorganisation. 

 

Figure 8: Why should poor map organisation impair function? Two developmental 

assumptions are necessary: (i) the downstream output system is also topographically 

organised; (ii) the output system has emergent receptive fields with restricted 

coverage of the input layer. Points X and Y can drive the same downstream unit 

before the emergence of receptive fields but not afterwards (see text for further 

details). 
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Figures 

 

Figure 1 
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Figure 2 
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Figure 3 

 

 

 

 

(a) Resource-rich map (b) Limited-resource map 
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Figure 4 

 

 

 

 

(a) Resource-rich map (b) Limited-resource map 
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Figure 5 

 

 (a) Resource-rich map (b) Limited-resource map 
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Figure 6 
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Figure 7 
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Figure 8 
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