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Abstract—Artificial neural networks learn how to solve new
problems through a computationally intense and time consuming
process. One way to reduce the amount of time required is to
inject pre-existing knowledge into the network. To make use
of past knowledge, we can take advantage of techniques that
transfer the knowledge learned from one task, and reuse it on
another (sometimes unrelated) task. In this paper we propose
a novel selective breeding technique that extends the transfer
learning with behavioural genetics approach proposed by Kohli,
Magoulas and Thomas (2013), and evaluate its performance on
financial data. Numerical evidence demonstrates the credibility
of the new approach. We provide insights on the operation of
transfer learning and highlight the benefits of using behavioural
principles and selective breeding when tackling a set of diverse
financial applications problems.
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I. INTRODUCTION

It is fundamental for financial institutions to provide ac-
curate risk assessments when evaluating new and/or existing
customers (applicants). This risk assessment process should
be continuous, evolve with the customer and/or institution
requirements [1]. Most of the traditional assessment techniques
that financial institutions use include but are not limited to:
artificial neural networks (ANNs), support vector machines
and complex tree structure predictors [2]. It is wasteful to
use these techniques in isolation as it does not exploit inter-
departmental and/or inter-institutional sharing of valuable in-
formation (knowledge). What we are proposing in this paper
is a novel framework that has its roots in behavioural genetic
studies, and provides a technique that facilitates the use of
existing customer knowledge (from different departments or
even between institutions) to improve the overall efficiency
and speed of traditional customer evaluation techniques. This
framework stems from previous work done by Kohli et al.
[3], [4], with the difference that it uses artificial breeding
techniques between its populations of genetic algorithms to
make this transfer of learning efficient on data with a financial
aspect.

Genetic algorithms are artificial intelligence’s search
heuristic which can easily mirror the process of natural selec-
tion. Sub-branch of the vast evolutionary algorithms class that
are inspired from the natural processes of evolution [5]. For
genetic algorithms to behave in an evolutionary way we need to
implement, all of the following evolutionary processes: selec-
tion, mutation, inheritance and crossover [6]. In order to take

full advantage of the power of evolutionary algorithms we need
to use populations of abstractions (ANNs as individuals) which
over iterations (time) will evolve towards better solutions; this
will happen without the need of any external interference.
Traditionally we start from random populations of individuals
and iteratively improve on the quality of the population by
evaluating each individuals fitness, selecting only the best
performing and mating them. We stop the evolution when we
reach a generation threshold or when we hit the fitness target
for the population [5].

One of the best performing classifiers of financial data
used by financial institutions have been ANNs [1]. These have
been tried and tested against statistically sound methods, and
provide one of the most robust approaches to perform large-
scale classification of financial data known to date [2]. We
have managed to use genetic algorithms (with novel selection
and mating techniques) and traditional feed-forward ANNs
and form a hybrid algorithm. This hybrid behavioural genetics
inspired algorithm is successful in performing transfer learning
on heterogeneous tasks, and is also used to asses, to some
degree, task similarity [4].

In transfer learning the goal is to transfer useful knowledge
from a source task (input) to a target task (output). We dif-
ferentiate between two types of transfer paradigms: functional,
where learning happens simultaneously in the source and in the
target; and representational, where tasks are learned at different
times [7], [8]. Most transfer learning research assumes a rela-
tionship between source and target tasks [9], [7], [8]. Therefore
the problem is that most of the transfer learning algorithms
expect source and target tasks to be similar, otherwise they
will not produce positive results [4], [7], [8]. Transfer learning
between different tasks poses high risk as it might result
in negative transfer, which damages learning capabilities. In
traditional approaches, the risk of transfer having a negative
impact on learning and performance is dictated by the degree
of similarity between tasks [4], [7], [8]. We focus on the branch
of transfer learning which deals with harnessing the ability to
learn. We move the top performing lerners from generation
to generation, until our learning models are very optimised
for learning. By combining specific breeding techniques with
the population based behavioural genetics framework we have
achieved positive transfer learning on diverse financial tasks.

The paper is structured as follows. In the next section
we give an overview of behavioural genetics and explain the
main ideas that underpin our approach. In Section III the
proposed methodology for transfer learning is derived and



in Section IV the financial datasets are described. Section V
presents experimental results. The paper ends with concluding
remarks in Section VI.

II. OVERVIEW OF BEHAVIOURAL GENETICS

Behavioural genetics studies the inheritance of traits be-
tween individuals of the same population, and then translates
them into similarities and/or differences. Individual variation
is separated in genetic and environmental components, which
are examined for their influences on animal (including human)
behaviour. In animal studies breeding and gene knockout
techniques are commonly used to extract the required infor-
mation. For humans the use of twin or adoption studies is
more common. In this paper we have combined both human
and animal studies by using both selective breeding and twin
studies.

We have to stress the importance of the environment in
individual development, this is simulated with the help of a
filter applied to each training set. To get a better appreciation
of the effect genetic and environmental influences have on
network performance, we use the research on english past
tense acquisition, with populations of identical and fraternal
twins [3]. To provide better variation within populations, we
use monozygotic (MZ, genetically identical twins, 100% same
genetic material) and dizygotic (DZ, genetically similar or
fraternal twins, 50% same genetic material), which in ANN
terms translate to networks with identical hyper-parameters for
MZ and 50% identical hyper-parameters for DZ. Both type of
networks (MZ or DZ) have random initial weights between
their hidden nodes [4].

Environmental influences are simulated by a unique filter
which is applied to the training set for each individual of the
population. The filtered training set resembles the notion of
socio-economic-status (SES) [4]. Research on the effect of SES
on language acquisition shows that children with lower SES
will perform significantly worse at the same task than children
with a higher SES. This happens because of differences in the
amount and quality of learning resources [10]. We ensured
that the equal environment assumption was kept in all the
simulated populations, which means that both MZ and DZ
individual twins share the same environment [3], [4]. Splitting
the populations between 50% MZ and 50% DZ twins, not only
ensures good variability but proves helpful when attempting to
learn multiple unrelated tasks [3].

By incorporating and optimizing selective mating tech-
niques into the behavioural genetics framework outlined above
we have managed to focus and enhance the transfer of learning
obtained on heterogeneous tasks [4]. We got the inspiration
from the animal kingdom where certain animals have been
mated (and still are now) for specific traits by humans,
throughout history [11].

III. PROPOSED TRANSFER LEARNING METHODOLOGY

In this section we present the key components of our ap-
proach. This is based on a modification of the behavioural ge-
netics population framework proposed by[4] that is combined
with a new selective breading technique to enhance transfer
of learning. Before we can use these algorithms we need to

homogenise the feature dimensionality of our datasets, trans-
forming them into environments with the same dimensionality
for learning algorithms but keeping the internal distribution
of the underlying problem the same. This is a requirement
because we want our populations and individuals to be able
to change environments without any external intervention on
population and/or individual topology. Next we divide the data-
sets into training, validation and testing, using a 60 - 20 - 20
distribution and we also split the data equally on the classes
we have. This is useful not only from a machine learning
context but it also mimics training with a curriculum [12].
It also ensures that training, validation and testing will have
the same distribution of class examples and still have elements
of randomness.

Algorithm 1 takes inspiration from the behavioural genetics
framework developed by Kohli [4] but does not place any
emphasis on heritability. A big part of Kohli’s behavioural
genetics framework is dedicated to heritability, which is ab-
stracted, to some degree to task relatedness. We have used
a more traditional approach to determine task relatedness, as
outlined in the next section. SES has been randomly applied to
each individual, from every population in the training phase,
by removing vectors from the training set. SES is random and
set between 0 and 40%, the latter meaning that 40% of the
training set will be removed.

A novel selective breeding technique is presented in Algo-
rithm 2. The selection part of this algorithm has no natural
basis and has been developed in this way to fully exploit
the variability and relationship between best and medium
level performing twins. The best performing members of the
population are selected for accuracy and medium level are
selected to encourage population flexibility. Mixing mid level
individuals with top performers is important for positive trans-
fer of learning, otherwise, by choosing only top performers we
have populations that are focused on optimal results and not
on transfer. By mating top performers with medium level we
obtain a good synergy between optimum results and transfer
flexibility. The crossover and mutation part of the algorithm is
the standard genetic algorithm random single point crossover
and 0.1% chance of random mutation.

IV. DATASETS

All the sets of data used in this work have been selected
from the UC Irvine Machine Learning Repository [13] and are
comparable with data published in [14], [15], [1], [16]. Two
of the three datasets are industry standards when it comes to
assessing classifier accuracy on financial data [14], [1], [16],
and have been used to assess transfer of learning in [15].
A short description of the datasets is available below and a
comparison between characteristics in is shown in Table I.

• Statlog (Australian Credit Approval)1 (Australian) –
credit card applications with a good mix of attributes:
continuous, small and large numbers of nominal val-
ues plus some missing values. This dataset was used
in [17], [18], [15], [14].

• Statlog (German Credit Data)2 (German) – credit
data provided by Prof. Hofmann and the numerical

1https://archive.ics.uci.edu/ml/datasets/Statlog+(Australian+Credit+Approval)
2https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)



Algorithm 1 Hybrid algorithm that exploits behavioural ge-
netics intuitions in a transfer learning context
Require: datasets← load all the preprocessed data-sets here

1: for dataset in datasets do
2: populations ← initialize 2 populations of the same

size with random values (between specific intervals, pre-
determined by the distribution of the data-set) for the
parameters of each individual

3: while populations threshold is not reached do . we
have used 20 generations as our threshold

4: brothers← emptyArray
5: for population in populations do
6: train(population, dataset) . only on training

and validation sets, this also applies a random SES to the
training set

7: fitness← assess(population, dataset) . on
testing set only

8: leaders ← selectForMating(population,
fitness) . extract top and middle performers from the
population

9: newPopulation← mate(leaders) . custom
breeding method, outlined at algorithm 2

10: brothers← split(newPopulation) .
split them into 2 equal populations (arrays of individuals)
so that there are no identical twins in the same population

11: end for
12: populations← combine(brothers) .

create 2 populations (arrays) from the 4 currently residing
in brothers by merging the populations that will not share
any identical twins between them

13: end while
14: end for

Algorithm 2 Selective breeding algorithm for transfer of
learning
Require: top← top performers from a population
Require: mid← average performers from a population

1: children← crossover(top) . combine all the
top performers in pairs and produce 4 offspring for each
pair: 2 MZ twins, 2 DZ twins

2: children← crossover(top,mid) .
combine middle and top performers in pairs and produce
4 offspring for each pair: 2 MZ twins, 2 DZ twins

3: children← crossover(mid) .
combine all the middle performers in pairs and produce 4
offspring for each pair: 2 MZ twins, 2 DZ twins

dataset provided by Strathclyde University. Used in
[14], [15], [1], [16]

• Banknote Authentication3 (Banknote) – data ex-
tracted from real images of forged banknotes, with the
help of an industrial camera. Provided by Volker Lo-
hweg (University of Applied Sciences, Ostwestfalen-
Lippe). Used in [19].

As you can see two of the datasets are from the SatLog
project. The SatLog project involves comparing the perfor-
mances of machine learning, statistical, and ANNs algo-

3https://archive.ics.uci.edu/ml/datasets/banknote+authentication

rithms on data sets from real-world industrial areas including
medicine, finance, image analysis, and engineering design. The
two datasets chosen by us from the SatLog project are popular
in the machine learning and the financial world.

Datasets Inputs Instances Attribute types
Australian 14 690 6 numerical and 8 categorical
German 24 1000 numerical
Banknote 5 1372 numerical

TABLE I. DIMENSIONALITY OF FEATURE SPACE WITH ATTRIBUTE
TYPES. ALL TARGETS HAVE 2 CLASSES.

The networks had the same number of hidden nodes
for each task (the other intrinsic parameters were optimally
selected), and the mean weight difference calculated between
the various tasks, as can be seen in Table II.

To assess task relatedness on the training, validation and
testing sets of data for each task, we have used the mean dif-
ference between the weight space of best performing ANNs of
the same size (same number of input, hidden and output nodes
and layers) [7]. We have chosen a fixed 100 hidden nodes
ANN, and with the rest of the hyper-parameters (learning rate,
momentum and slope of logistic function) varying to perform
optimally on each of the different tasks. After finding the best
hyper-parameters for each of our 3 datasets, we get the mean
of the norm of the difference of the weight vectors between
our datasets. You can see the outcome in Table II: the smaller
the difference the more related the tasks are.

Datasets Australian German Banknote
Australian 0.0000 0.0426 0.0448
German 0.0426 0.0000 0.0401
Banknote 0.0448 0.0401 0.0000

TABLE II. THE MEAN OF THE NORM OF THE DIFFERENCE OF THE
WEIGHT VECTORS.

V. EXPERIMENTS AND RESULTS

Before any of the experiments can commence we have to
make sure that the data is in the format described in section III.
We need the data normalized and split into training, validation
and testing sets.

We have two main sections for results, firstly we got the
optimal neuro-computational calibrations for each dataset. This
helped us encode each source task with its optimal ranges and
it has enabled us to narrow down the initial search space.
Although we can get the best set of hyper-parameters, we
are not after best performance, what we are interested in is
using intervals that center around the best performing hyper-
parameters. This will ensure that transfer of learning can
occur as the source networks will not be focused only on the
source task, and will allow a smooth transition of learning
from source to target(s). Sometimes the best hyper-parameter
cannot be interpreted as the center of an interval, in that
case we take the lowest most significant neuro-computational
parameter as lower bound of the interval and the highest as the
other. We have chosen only 4 hyper-parameters to optimise:
number of hidden nodes, learning rate, momentum and slope
of logistic function, but many more can be incorporated in this
framework. You can see the calibration bounds of the datasets
in Table III.



Datasets Hidden nodes Learning rate Momentum Logistic slope
Australian 15 to 50 0.01 to 0.2 0.01 to 5.1 1 to 4
German 5 to 30 0.01 to 0.4 0.1 to 1.2 0.8 to 2.1
Banknote 5 to 15 0.01 to 0.15 0.01 to 0.01 0.01 to 1.2

TABLE III. OPTIMAL SOURCE TASK CALIBRATIONS.

After we have the source calibrations, we start using the
two algorithms described in section III. For the purposes
of these experiments we have used populations of 1200
individuals (ANNs), each trained for 1000 epochs, without
early stopping [20]. The fitness criterion was overall miss-
classification error on the test data set. We have started with
two random (but within the bounds presented in table III)
populations. We select a source task, from the 3 available
and train the 2 random populations on this chosen task.
Furthermore we evolve these populations by following the
steps outlined in Algorithm 1 and Algorithm 2 for 20 gen-
erations. This produced highly optimised populations for the
chosen source task, and populations that are flexible enough
to transfer the acquired learning knowledge to aid learning of
new tasks. The flexibility is possible because of the selective
breeding pressures outlined in Algorithm 2. We take the 2
populations, breed them into one using the same technique
as before (get top and middle performers and breed them)
but without producing MZ and DZ twins. This produces only
2 non-identical offspring per pair and get a 1200 individual
population, which is the population that best encodes the
selected source task. We do the same for the remaining 2
source tasks, and have now one 1200 individuals population
optimised for each of our tasks (datasets).

The optimised populations are then trained and tested on
each of the tasks, and the results are presented in Tables IV,
V and VI. The top part of each table represents the mean
performance of the population on the validation data set of
each target task, and the lower represents performance on
the test set for each target task. When compared with results
from literature [14], [1], [16], this approach is not the best
performing one. This is because we have focused our efforts
in producing positive transfer of learning, without any negative
impact on the overall process of learning. Whilst approaches
in [1], [14], [16] were conceived to solve one of the problems
outlined in the datasets in isolation. We have succeeded in
solving all problems together and share knowledge between
solutions, as one can see from the continuity of the results
in Tables IV, V and VI. The continuity is not only in the
overall classification error from source to target tasks but also
in all the underlying parts that make that error. As one can
see there is no spike or abrupt jump in values between all
the true and false positives or negatives. When comparing our
approach with a population (1200 individuals) of randomly
initialised individuals (networks), we can see that our approach
is considerably more accurate. This comparison becomes evi-
dent in Figure 1 with reinforcing testing and validation results
presented in Table VII.

Targets Australian German Banknote
True positives 330.75 137.5 737.25
True negatives 267.5 606.5 607.75
False positives 39.5 93.5 2.25
False negatives 52.25 162.5 24.75
Precision 0.837 0.79 0.961
Recall 0.871 0.866 0.996
Mean square error 13.297 25.6 1.968
True positives 329.75 138.0 736.25
True negatives 264.5 608.75 607.25
False positives 42.5 91.25 2.75
False negatives 53.25 162.0 25.75
Precision 0.833 0.790 0.959
Recall 0.862 0.870 0.995
Mean square error 13.877 25.325 2.077

TABLE IV. EVALUATIONS ON THE VALIDATION (UPPER) AND TESTING
(LOWER) DATASETS FOR SOURCE TASK: AUSTRALIAN.

Targets Australian German Banknote
True positives 327.5 138.75 737.75
True negatives 268.75 624.0 608.25
False positives 38.25 76.0 1.75
False negatives 55.5 161.25 24.25
Precision 0.829 0.795 0.962
Recall 0.875 0.891 0.997
Mean square error 13.587 23.725 1.895
True positives 330.75 127.0 737.5
True negatives 270.0 619.5 608.75
False positives 37.0 80.5 1.25
False negatives 52.25 173.0 24.5
Precision 0.838 0.782 0.961
Recall 0.879 0.885 0.998
Mean square error 12.935 25.35 1.877

TABLE V. EVALUATIONS ON THE VALIDATION (UPPER) AND TESTING
(LOWER) DATASETS FOR SOURCE TASK: GERMAN.

Targets Australian German Banknote
True positives 337.5 111.75 738.75
True negatives 263.75 630.5 607.25
False positives 43.25 69.5 2.75
False negatives 45.5 188.25 23.25
Precision 0.853 0.773 0.963
Recall 0.859 0.901 0.995
Mean square error 12.862 25.775 1.895
True positives 334.25 136.75 735.5
True negatives 262.25 621.0 607.25
False positives 44.75 79.0 2.75
False negatives 48.75 163.25 26.5
Precision 0.843 0.793 0.958
Recall 0.854 0.887 0.995
Mean square error 13.550 24.225 2.132

TABLE VI. EVALUATIONS ON THE VALIDATION (UPPER) AND TESTING
(LOWER) DATASETS FOR SOURCE TASK: BANKNOTE.

Targets Australian German Banknote
Validation error 28.155 33.3 2.22
Testing error 37.5 28.7 3.01

TABLE VII. CLASSIFICATION ERROR FOR RANDOMLY INITIALISED
NETWORKS



Fig. 1. Benchmark between randomly initialised networks and our proposed transfer learning approach



VI. CONCLUSION

Diverse financial data has been chosen as the topic of
this work because financial institutions have and still are
producing large amount of data on a daily basis. In contrast to
approaches proposed in the literature where special methods
are developed to solve a particular problem, we propose a
transfer learning approach that exploits knowledge acquired
in previous situations to learn a new problem. Approaches
based on transfer learning are normally affected by negative
transfer. The proposed framework based on behaviour genetics
offers flexibility when learning different problems, alleviat-
ing the issue of negative transfer in the proposed datasets.
Furthermore, by using selective breeding, like humanity has
done with animals for thousands of years, we have managed
to improve overall accuracy and keep the learning flexibility.
Novel selective breeding techniques injected in an already
successful behavioural genetics computational framework, re-
sulted in optimised positive transfer of learning. Although the
results that we have reported are good from a classification
and transfer point of view we could still improve this approach
by utilizing more sophisticated selective breeding techniques
and ensemble generation from populations based on individual
class accuracy. In future work we intend to explore these
methods in more depth.
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