Structural plasticity with learning in the healthy brain

Dr Fiona M Richardson

Basis of talk

Changes in brain structure can occur beyond those associated with development ageing and neuropathology

- · Learning a new skill can result in local changes in brain structure
 - Regional differences in the amount of grey/white matter

· Local experience-dependent structural changes - Suggests a relationship with learning - Change in grey matter lasting for as long as the skill is practiced · Many of these regions can be linked to a functional role - functional imaging data showing region active during task How are regional differences detected? • Voxel Based Morphometry (VBM) - An unbiased analysis technique - Possible to analyse the whole brain ... focus on language Structural studies of language skills in the typical population - Bilingualism - Vocabulary learning

Structural plasticity in bilinguals

- · We have the capacity to learn multiple languages
- Does learning an extra language have an effect on local brain structure?
 - Is this affected by the age at which the second language was learned or second language proficiency?
 - Study of European bilinguals
 - 'early' bilinguals acquired 2nd language before age of 5 years
 - 'late' 'bilinguals acquired 2nd language between age of 10-15 years

Mechelli et al. (2004) Nature

 Comparison to identify potential differences in grey matter between bilinguals and monolingual participants

- Grey matter density greater in the inferior parietal cortex of bilinguals than monolinguals
 - Significant effect in the left hemisphere
 - Trend in the right hemisphere

Relationship between grey matter, proficiency, and age of acquisition

 English-Italian bilinguals: acquired 2nd language between ages 2 and 34 years

 Second language proficiency correlated with grey matter density

 Grey matter density correlated negatively with age of second language acquisition

Lee et al. (2007) Journal of Neuroscience

Anterior SMG:

· associated with phonological processing

ANG:

associated with semantic processing

No route between anterior SMG and ANG other than pSMG

pSMG

• links **phonological** and **semantic** word information

- Consistency in findings across studies
 - Monolinguals and bilinguals
- pSMG grey matter corresponds to the number of words learnt
- pSMG not typically detected in functional studies of language
 - Is activated in studies that involve learning new vocabulary

 Do regions typically active during language tasks show a relationship between word knowledge and brain structure?

activation for sentences

Regions positively correlated with vocabulary knowledge **Grey matter** 1) Posterior superior temporal sulcus (pSTS) 2) Posterior temporo-parietal region (pT-P) Richardson et al. (in press) Journal of Cognitive Neuroscience · Differential effects of vocabulary knowledge in temporal and parietal regions across lifespan - Temporal (pSTS and pT-P) consistent across lifespan - Parietal (pSMG) detected in monolingual adolescents (not monolingual adults) and in bilingual adults Could these reflect different ways of learning? Definitions/Equivalents: Context: Everyday language experience

Summary

Language proficiency can be reflected in regional differences brain structure

- Identify regions not typically identified in functional studies
 - Relationship specific to learning

elephant = pachyderm

- Common influence of proficiency on structure and function during language processing
 - Changes as a consequence of learning

Final caveat Differences/changes? Cross-sectional Longitudinal Difference between identifying a relationship and establishing a causal connection Future Causal link	
The End	