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Modeling Mechanisms of Persisting and
Resolving Delay in Language Development

Michael S. C. Thomasa and V. C. P. Knowlanda

Purpose: In this study, the authors used neural network
modeling to investigate the possible mechanistic basis of
developmental language delay and to test the viability of the
hypothesis that persisting delay and resolving delay lie on a
mechanistic continuum with normal development.
Method: The authors used a population modeling approach
to study individual rates of development in 1,000 simulated
individuals acquiring a notional language domain (in this
study, represented by English past tense). Variation was
caused by differences in internal neurocomputational
learning parameters as well as the richness of the language
environment. An early language delay group was diagnosed,
and individual trajectories were then traced.
Results: Quantitative variations in learning mechanisms were
sufficient to produce persisting delay and resolving delay
subgroups in similar proportions to empirical observations. In

the model, persisting language delay was caused by
limitations in processing capacity, whereas resolving delay
was caused by low plasticity. Richness of the language
environment did not predict the emergence of persisting
delay but did predict the final ability levels of individuals with
resolving delay.
Conclusion: Mechanistically, it is viable that persisting delay
and resolving delay are only quantitatively different. There
may be an interaction between environmental factors and
outcome groups, with individuals who have resolving delay
being influenced more by the richness of the language
environment.
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Around 15% of children show delayed language
development between the ages of 3 and 4 years
(Broomfield & Dodd, 2004). However, in a signif-

icant proportion of cases, perhaps as many as two-thirds
(Rannard, Lyons, & Glenn, 2005), the delay resolves so that
children subsequently fall within the normal range on stan-
dardized measures. Other children showing early language
delay go on to exhibit persisting deficits that have serious
and long-term consequences for their education (Justice,
Bowles, Pence-Tumbell & Skibbe, 2009; Young et al., 2002),
socialization (see Durkin & Conti-Ramsden, 2010), mental
health (Arkkila, Rasanen, Roine, & Vilkman, 2008; Beitchman
et al., 2001), and employability (Law, Rush, Schoon, &
Parsons, 2009). Little is understood about the developmental
mechanisms that differentiate persisting language delay from
resolving language delay, with arguments made for the
importance of both genetic and environmental factors. In
this article, we use computational modeling methods to

further a mechanistic understanding of the causes of persisting
delay versus resolving delay.

Dale, Price, Bishop, and Plomin (2003) identified a
sample of 802 two-year-old children who were at risk for
language delay on the basis of parental reports of vocabulary,
grammar, nonverbal ability, and the children’s use of lan-
guage to refer to past and future events (also known as
displaced reference). The authors followed up when these
children were 3 and 4 years of age, again using parental
measures. At 3 years of age, only 44.1% of these children met
the criteria for persisting language difficulties, and at 4 years
of age, the proportion fell to 40.2%. Thus, in more than
half the cases, the early indicators of language delay had
resolved. This pattern has been observed in a number of
studies (Bishop & Edmundson, 1987; Paul, 1996; Rescorla,
Dahlsgaard, & Roberts, 2000; Whitehurst & Fischel, 1994).
For example, Rescorla and colleagues (2000) examined
the mean length of utterance of late talkers at 3 years of age
and 4 years of age and found that although 41% of the
children scored above the 10th percentile at age 3, this figure
had risen to 71% by age 4. Rescorla and colleagues found
that the resolution of delay continued at slightly older ages.
Bishop (2005) assessed 264 children who were identified as
being at risk for language impairment at age 4; only one third
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of these children met psychometric criteria for specific lan-
guage impairment (SLI) at age 6. By age 7, however, greater
stability is apparent in children’s developmental trajectories:
Conti-Ramsden, St. Clair, Pickles, and Durkin (2012) re-
ported that the language growth trajectories of 242 children
with SLI who were followed longitudinally from ages 7
through 17 remained predominantly parallel to—and below—
those of children in the normal range. It is notable that the
extent to which children can be seen to recover across devel-
opment depends on the measure that researchers used to
assess language acquisition, not only in terms of which levels
of language are assessed but also whether parental report or
standardized assessment is adopted. Although rate of change
may vary depending on the assessment tools, the pattern
of findings remains robust across linguistic domains.

For their sample, Dale et al. (2003) explored whether it
was possible to predict if children would fall in persisting
delay (n = 372) or resolving delay (n = 250) groups on the
basis of their profiles at 2 years of age. Children whose delays
would persist scored reliably lower across a number of
parental rating measures, including vocabulary, grammar,
displaced reference, and nonverbal skills, and showed re-
liably lower maternal education and a greater incidence
of ear infection. Nevertheless, the effect sizes were small
(.01–.06), and logistic regression analyses found that chil-
dren’s profiles at age 2 offered only modest classification of
outcome at age 4, with accuracy rates between 60% and 70%
(where chance would be 50%). The derived function failed
to detect the majority of children who would show a per-
sisting delay. A substantial minority of children whose delay
was predicted to resolve did not show such resolution. Thus
although persisting and resolving delay groups differed
marginally at diagnosis, it was difficult to predict outcome
with any accuracy. Fernald and Marchman (2012) found a
similar level of success predicting outcomes earlier in devel-
opment. The authors grouped children as typically developing
(n = 46) or late talkers (n = 36) on the basis of productive
vocabulary scores at age 18 months, where late talkers scored
below the 20th percentile. Predicting group membership at
age 30 months on the basis of vocabulary showed 78% sen-
sitivity and 68% specificity, where sensitivity is the correct
prediction of group membership and specificity is the correct
prediction of nongroup membership. Fernald and Marchman
found that an online measure of the efficiency of language
processing at age 18 months provided additional predictive
power for language outcome over and above vocabulary. Even
given this moderate success in predicting patterns of behavior,
the underlying causes of developmental patterns remain un-
clear, and the variety of outcome measures used makes it
difficult to generalize across studies.

Causes of Language Delay
No clear picture has emerged from theoretical ac-

counts of language delay as to why delay should resolve in
some cases but not in others. Such accounts tend to differ on
two dimensions: (a) whether children with persisting and
resolving delay form qualitatively or quantitatively different

groups and (b) whether the relevant causal factors are ge-
netic or environmental (see Bishop, Price, Dale, & Plomin,
2003).

On the first dimension, Rice and colleagues (see, e.g.,
Rice, 2009) have argued that, with respect to specific lan-
guage impairment (SLI), persisting delay can be traced to
the developmental impairment in a specialized system for
acquiring morphosyntax and, therefore, form a qualitatively
different group. The account assumes that multiple, distinct
linguistic domains are involved in language acquisition
and that these domains are not well synchronized in children
with SLI. However, once language growth begins in a domain,
it may proceed in a fashion similar to that seen in typical
development. Resolving delay might, then, constitute the
bottom of the distribution of normal variation of children
who do not have such a specific developmental impairment.
This idea has gained suggestive support from genetic anal-
yses implicating a potentially monogenetic cause of SLI
(Bishop, 2005). By contrast, researchers such as Leonard
(1987) and Rescorla et al. (2000) have suggested that per-
sisting and resolving delay are only quantitatively different:
There is a single continuum of individual variation in rates
of language development caused by the same kinds of mech-
anisms, with persisting delay representing a more extreme
case than resolving delay. For example, Fernald andMarchman
(2012) characterized the dimensional view as assuming that
“children with language impairment represent the lower end
of multiple continuous dimensions of language skill that
are normally distributed” (p. 204). This view is supported by
the consistent finding that the strongest predictor of later
language outcome—for example, in vocabulary development—
is earlier language performance (although, even here, the
variance explained is usually less than 40%; see, e.g., Chiat &
Roy, 2008; Henrichs et al., 2011). The differences found in
later development may be exaggerated versions of those
already present in early development.

With respect to the second dimension of nature–
nurture, the authors of several studies have implicated
environmental factors in rates of language development.
Nelson, Welsh, Vance Trup, and Greenberg (2011) exam-
ined 336 four–year-old children living in poverty and found
that a majority of them exhibited clinically significant lan-
guage delays. To the extent that poverty is an environ-
mental condition, this implicates environment in causing
language delay. Researchers have successfully used socio-
economic status (SES) gradients to explain variation in all
aspects of language development, from phonological aware-
ness (McDowell, Lonigan, & Goldstein, 2007) to the com-
prehension (Huttenlocher, Vasilyeva, Cymerman, & Levine,
2002) and production (Huttenlocher, Waterfall, Vasilyeva,
Vevea, & Hedges, 2010) of complex grammatical forms, al-
though vocabulary size may be the language measure most
sensitive to the effects of SES. Hart andRisley (1995) observed
different rates of language development in children from
different SES backgrounds and linked these with large var-
iations in the quantity of language spoken to the child. More
recently, Henrichs et al. (2011) reported that maternal edu-
cation was associated with both patterns of late-onset delay
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and persisting delay in a population study of 3,759 toddlers.
When Anushko (2008) analyzed the development of language
skills of 230 children at 15, 27, 37, and 72 months of age,
she found that socioeconomic factors, the children’s social–
emotional competence, and the level of language exposure
(as measured by book reading at home) all reliably predicted
the rate of increase in expressive and/or receptive language
(see also Anushko, Jones, & Carter, 2009). It is interesting to
note that when children were initially split between low- and
high-performing groups, those who were able to accelerate
from low to high groups had significantly more exposure to
and experience with language through book-reading activ-
ities than their peers who remained in the low-growth group
across the time points. A number of longitudinal studies have
shown that differences in the richness of linguistic input re-
sult in an increasing gap in children’s language develop-
ment (Huttenlocher et al., 2010; Reilly et al., 2010; Rowe,
Raudenbush, & Goldin-Meadow, 2012). The consequences of
this developmental divergence are persistent and pervasive
through the school years (for a review, see Hoff, 2013). Bishop
et al. (2003) used behavioral genetic methods with their sample,
which comprised monozygotic and dizygotic twin pairs, to
explore the etiology of persisting and resolving delay. The
results indicated similar and modest heritabilities of .25 for
both groups, implicating environmental factors in the cause
of delay.

By contrast, other researchers have argued that en-
vironmental factors play little role in delay, on the basis of
the failure of measured environmental variables to predict
language levels. In a sample of 1,766 children, Zubrick
Taylor, Rice, and Slegers, 2007) found that SES, family, and
maternal characteristics did not predict language delay at
age 2. The strongest predictors were family history for late
language, male gender, and early neurological problems. In a
longitudinal study of language growth with a smaller sample
size, Rice, Wexler, and Hershberger (1998) did not find
any predictive power of maternal education on the growth
of morphemes marking tense and agreement in typically
developing children and in children with SLI. Moreover,
Dale et al. (2003) found that adding level of maternal edu-
cation to their logistic regression analysis failed to improve
their ability to predict whether children’s language delays
would persist or resolve. Overall, although children who
have been diagnosed with early language delay are clearly
heterogeneous, the dimensions defining the heterogeneity
remain unclear (Desmarais, Sylvestre, Francois, Bairati, &
Rouleau, 2008).

Part of the challenge stems from the current limited
understanding of the mechanisms that might cause delay.
Delay is most often used descriptively rather than mecha-
nistically to recognize the fact that the behavior in some
target group resembles that of younger, typically developing
children (Thomas et al., 2009). At a mechanistic level,
maturational views of delay have been most clearly artic-
ulated. These characterize language development as analo-
gous to biological growth and growth rate variations as
reflecting differences in (putative) genetically controlled
timing mechanisms (see, e.g., Rice, 2009, for such an account

in the context of morphosyntax development). A recent
proposal by Rice (2012) stipulates that genetic mechanisms
operate directly but independently to influence, respectively,
the onset, acceleration, and deceleration of language growth
trajectories. Experience-dependent views of delay are less
frequently articulated, but these entail either a language
system that receives fewer learning experiences or a learning
system that is less malleable, such that more experience is
required to effect a change in behavior. The specificity of
causal mechanisms is also unclear. As well as language-
specific proposals, some accounts maintain that children
with language delay have more general processing limita-
tions. These accounts are motivated by evidence that chil-
dren with language impairments also show deficits in the
speed (Lahey, Edwards, & Munson, 2001; Miller, Kail,
Leonard, & Tomblin, 2001) or accuracy (Bavin, Wilson,
Maruff, & Sleeman, 2005) with which they perform non-
verbal tasks such as mental rotation (Johnston & Ellis
Weismer, 1983) and visuospatial memory (Hoffman &
Gillam, 2004). However, the exact nature of the generalized
deficit remains to be adequately articulated, with authors
variously attributing behavioral differences to slower pro-
cessing speed (Miller et al., 2001), restrictions in working
memory capacity (Ellis Weismer, Evans, & Hesketh, 1999),
or reduced efficiency of resource allocation across domains
(Im-Bolter, Johnson, & Pascual-Leone, 2006).

Using Computational Modeling to Investigate
Mechanisms of Delay

One way to address the superficial consideration given
to mechanisms of delay is through the use of computational
modeling. By virtue of implementation, modeling can ad-
vance the detail with which theoretical accounts are spe-
cified. Models that embody theoretical proposals can then test
the viability of those proposals to account for the observed
empirical data. Models can show how a single mechanistic
account can unify a range of previously disparate empirical
phenomena. And models can generate novel predictions that
can then be evaluated against empirical data.

In this article, we consider a computational model that
addresses the differences between persisting and resolving
language delay. The model takes advantage of a new method
called population modeling (Thomas, Baughman, Karaminis,
& Addyman, 2012). In population modeling, the aim is to
simulate a large population of individuals undergoing a
developmental process. In this population, multiple intrinsic
and extrinsic properties are varied across individuals (where
the term intrinsic properties refers to the computational
abilities of each system and the term extrinsic properties
refers to the quality of the learning environment to which
each system is exposed). In combination, these factors
produce a distribution of performance as the population
acquires the target behavior. It is possible that atypical
conditions can be applied to individuals against this back-
ground of variation. The framework permits not only the
study of individual differences in rates of development but
also the investigation of how cases of qualitatively atypical

Thomas & Knowland: Mechanisms of Language Delay 469

Complimentary Author PDF: Not for Broad Dissemination



development may differ from those seen in the typically
developing population. In the present study, we employed
population modeling to investigate the idea that different
limitations in computational processing might be the cause
of developmental delays in language acquisition. We then
pursued the following four aims: (a) to establish whether a
quantitative account of developmental variations in a pop-
ulation was sufficient to generate subgroups that dem-
onstrated persisting delay and resolving delay or whether
qualitative differences were necessary; (b) to evaluate whether
there were differences in the behavioral profiles of these sub-
groups when delay was first diagnosed; (c) to assess the role of
environmental variation in causing developmental delays or
aiding their resolution; and (d) to investigate, in implemented
simulations, the mechanisms responsible for producing cases of
persisting versus resolving delay.

Method
Simulation Overview

A population of 1,000 artificial neural networks was
exposed to the language domain (English past tense), and their
developmental trajectories were analyzed. English past tense
was used as the language domain because it allows a direct
comparison to previously reported empirical data (Bishop,
2005) and because past tense formation is well characterized
by previous computational models (Thomas & Karmiloff-
Smith, 2003). The model served as an example of a develop-
mental system applied to the problem of extracting the latent
structure of a language domain through exposure to a learning
environment. Two sources of variation caused individual
differences in the models’ rates of development. We encoded
extrinsic variation by altering the amount of information
available in the input, which is analogous to the richness
of the linguistic environment to which a child is exposed. We
encoded intrinsic variation by altering the quality of the
learning mechanism, inspired by accounts of SLI that pro-
pose that language delays may be caused by processing
limitations. Implementation involved variations in 16 neuro-
computational parameters controlling each artificial neural
network’s construction, activation, adaptation, and mainte-
nance. Variations in the parameters can be thought of as
modulating four broad properties of a network’s functioning:
its learning capacity, its plasticity, its quality of signal,
and its possible regressive events (although some parameters
contribute to more than one role). From the population
of 1,000 simulated individuals, we used early performance
on regular verb acquisition to define a delay group, and
we traced their subsequent progress with reference to the
population’s normal range to identify different possible
outcomes.

Simulation Details
Base model. A three-layer, backpropagation network

was trained to output the past tense form of a verb from an
input vector combining a phonological representation of
the verb stem and lexical–semantic information (Joanisse &

Seidenberg, 1999). The training set was the “phone” vo-
cabulary from Plunkett and Marchman (1991, p. 70). This
comprised an artificial language set constructed to reflect
many of the important structural features of English past tense
formation. There were 500 monosyllabic verbs, constructed
using consonant–vowel (CV) templates and the phoneme
set of English. Phonemes were represented over 19 binary
articulatory features, a distributed encoding based on stan-
dard linguistic categorizations (Fromkin & Rodman, 1988).
Separate banks of units were used to represent the initial,
middle, and final phonemes of each monosyllable. The output
layer incorporated an additional five features to represent the
affix for regular verbs. The input layer included 500 units
to encode the lexical status of each verb in the training set
using a localist encoding scheme (Joanisse & Seidenberg, 1999;
Thomas & Karmiloff-Smith, 2003). Thus, networks had
557 input units ([3 × 19] + 500 = 557) and 62 output units
([3 × 19] + 5 = 62). There were four types of verbs in the
training set: (a) regular verbs that formed their past tense by
adding one of the three allomorphs of the +ed rule, conditioned
by the final phoneme of the verb stem (e.g., for English:
tame–tamed, wrap–wrapped, chat–chatted); (b) irregular
verbs whose past tense form was identical to the verb stem
(e.g., hit–hit); (c) irregular verbs whose past tense was formed
by changing an internal vowel (e.g., hide–hid); (d) irregular
verbs whose past tense form bore no relation to its verb
stem (e.g., go–went). There were 410 regular verbs and 20,
68, and 2, respectively, of each irregular verb type. We
constructed a separate set of novel verbs to evaluate the gen-
eralization performance of the network. These verbs could
differ depending on their similarity to items in the training set.
Generalization in this case was assessed via 410 novel verbs,
each of which shared two phonemes with one of the regular
verbs in the training set, and was evaluated based on the
proportion of these novel verbs that were assigned the correct
allomorph of the regular past tense inflection.

Encoding extrinsic variation. Our manipulation of
extrinsic variation was motivated by research on SES in-
fluences on language development. Each child was assigned a
value (henceforth referred to as the family quotient [FQ])
to represent the quality of the linguistic environment in
which they would be raised. This was a value between 60%
and 100%. We used it as a probability to determine whether
each verb in the full perfect training set would be included
in the child’s individual training set. The training set was
then fixed. This method captured the reduced quantity
of language input experienced by children in lower SES
families, including in past tenses (Hart & Risley, 1995), but
also the reduced diversity of words (Hoff, 2003). A lower
SES family would be modeled as using fewer past tenses
overall, fewer types of regular verbs, and fewer types of
irregular verbs (see Thomas, Forrester, & Ronald, 2013, for
further implementation details). Performance was always
assessed against the full training set.

Encoding intrinsic variation. Connectionist networks
contain a range of parameters that increase or decrease
their ability to learn a given training set. Computational
parameters such as learning rate, momentum, and number of
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hidden units feature in most published simulations. In
models of typical or average development, parameters are
optimized to achieve best learning (usually in the presence of
the perfect training set). In the present model, a number of
parameters were simultaneously varied across individual
networks, with overall learning ability determined by their
cumulative effect. Therefore, the mechanistic variations
producing differences in the rates of development were only
quantitative. Variations occurred across 16 computational
parameters, allowing for more than 2 trillion possible unique
individuals.

The parameters were as follows:

• Network construction—architecture, number of hidden
units, range for initial connection weight randomization,
and sparseness of initial connectivity between layers.

• Network activation—unit threshold function, processing
noise, and response accuracy threshold.

• Network adaptation—backpropagation error metric used
in the learning algorithm, learning rate, and momentum.

As well as an overall learning rate, there were separate pa-
rameters modifying the learning rate between the semantic
input units and the hidden units and between the phono-
logical input units and the hidden units, potentially altering
the relative balance of these sources of information during
learning and, therefore, allowing more lexical or phonological
strategies to past tense acquisition. Finally, the parameter of
network maintenance consisted of weight decay, pruning onset,
pruning probability, and pruning threshold.1

These parameters can be viewed as serving different
types of processing roles within the network, although some
parameters contribute to more than one role. Some param-
eters alter the network’s learning capacity—that is, the com-
plexity and the amount of information that can be learned.
These parameters include the architecture, the number of
hidden units, and the initial sparseness of connectivity. Re-
gressive events involving pruning of connections can also re-
duce capacity later in development, implicating the pruning
onset, pruning probability, and pruning threshold parameters
in predicting learning trajectories (see Thomas, Knowland,
& Karmiloff-Smith, 2011). The nature of the learning algo-
rithm determines both what can be learned and also how
quickly: The overall speed of learning can be thought of as the
network’s plasticity. Parameters that alter plasticity include
the learning rate parameter, the learning rates in semantic and
phonological connections, the momentum, the initial range
of weight variation, and the unit threshold function. The unit
threshold function determines how responsive a processing
unit is to variations in its input and, therefore, to some extent,
determines the quality of the signal propagating through
the network. Signal is also affected by the level of processing
noise and by the precision required of output units to drive a
response.

Design. Development was traced across a population
of 1,000 simulated individuals, focusing on the rate of acqui-
sition of regular English past tense forms. One thousand sets
of the 16 computational parameter values were generated
at random, with parameters sampled independently. These
sets were instantiated as 1,000 artificial neural networks.
An FQ value was generated for each network and was used
to create an individualized training set. Each network was
trained for 1,000 epochs on its training set, where one epoch
corresponded to a single presentation of all the verbs in the
individual’s training set. At each epoch, performance was
measured on the perfect training set. Performance was as-
sessed on regular verbs, on irregular verbs, and on gener-
alization of the past tense rule to novel forms in order to
generate a behavioral “profile” for each network. Perfor-
mance was measured via accuracy levels (percent correct).
Early performance on regular verb acquisition was used to
define a delay group (see Results section below), and their
subsequent progress was then traced with reference to the
population normal range.

Results
Defining Delay

Five time points were defined in the development of
the population, when the population accuracy for regular
verb production was 40%, 50%, 60%, 65%, and 78%. These
occurred at 31, 49, 84, 127, and 500 epochs of training,
respectively. These points were selected to be representative
of the stages of early population development, with the final
time point reflecting population asymptote. Figure 1(a)
shows the distribution of regular performance for Time 1, at
which point individuals were identified as exhibiting devel-
opmental delay if their performance fell more than 1 SD
below the population mean. This corresponded to 28.7% of
the population. If the population were to be divided into
quartiles based on FQ, the Time 1 delay group comprised
76 individuals from the lowest FQ quartile, 74 and 79 indi-
viduals from the middle quartiles, and 58 individuals from
the upper quartile. Although the highest FQ quartile had
the fewest delayed individuals, the distribution was not
reliably different from chance, c2(3, N = 4) = 3.69, p = .297).
Developmental delay was then re-diagnosed at each subse-
quent time point, shown in Figures 1(b) through 1(e). Figure 2
shows the proportion of the population diagnosed with delay
at each time point. A small number of those delayed at the
final time point (18) were not delayed at Time 1. Late onset
delay is also a prominent pattern reported in the literature
(see, e.g., Henrichs et al., 2011; Ukoumunne et al., 2011). Of
those delayed at the first time point, 118 showed a delay that
persisted through to the final time point, whereas the delay
resolved in 169 (or 58.9%) of the cases. By the final time point,
only 13.6% of the population was categorized as delayed.

In terms of intrinsic and extrinsic influences on devel-
opment, simulated individuals differed from one another
only quantitatively, yet these quantitative differences were
sufficient to produce persisting and resolving delay groups.

1Formal specification of the parameters and their value ranges can be
found in a technical report available at www.psyc.bbk.ac.uk/research/
DNL/techreport/Thomas_paramtables_TR2011–2.pdf
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Indeed, the proportion of cases that resolved was broadly
similar to the rates observed in empirical studies (Bishop, 2005;
Bishop & Edmundson, 1987; Dale et al., 2003; Paul, 1996;
Rescorla et al., 2000); it was, however, less than that observed
by Whitehurst and Fischel (1994).

If persisting and resolving delay lie on a strict devel-
opmental continuum, one might expect cases of resolving delay
to lie toward the bottom of the normal range—that is, resolving
cases would slip into the normal range but would still per-
form relatively poorly and would not, therefore, represent
complete resolution of the delay. The population rank orders
of individuals in the resolving delay group were examined
to evaluate this idea. Of those showing resolving delay, 80%
(136 individuals) indeed remained in the bottom 500 of
the population. However, in some individuals, performance
at Time 5 was somewhat better: 17% (28 individuals) had
a rank order in the top 500, and a few (3%; five individuals)
even finished in the top 200. Therefore, the outcome of
resolving delay was variable. Good final outcomes were
possible, suggesting that, in some cases, delay could com-
pletely resolve. Examples of individual developmental
trajectories for the five groups—typically developing, per-
sisting delay, resolving delay with low outcome, resolving
delay with good outcome, and resolving delay with very
good outcome—are depicted in Figure 3. Each plot also
contains the five time points and the mean developmental
trajectory for the population as a whole.

Predicting Persisting Versus Resolving Delay From
Time 1 Behavioral Profiles (and FQ)

The behavioral profiles of simulated individuals in
the persisting and resolving delay groups were compared
at Time 1. The profile initially included nine measures of
various aspects of past tense performance on training and
generalization sets. Behavior on three of these measures best
summarized the pattern: regular verbs, vowel-change irreg-
ular verbs, and regularization of novel verbs. At Time 1,
the persisting delay group performed reliably worse on

Figure 2. Proportion of simulated population exhibiting language
delay at each time point, where delay was defined as falling more than
1 standard deviation below the population mean at that time point.

Figure 1. Performance distribution on regular verbs at each time
point, along with the cutoff for defining developmental delay. μ is the
mean and σ is the standard deviation at each time point.
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Figure 3. Sample developmental trajectories for regular verbs, for each group: (a) typical development, (b) persisting delay, (c) resolving delay
with low outcome, (d) resolving delay with good outcome, and (e) resolving delay with very good outcome. Trajectories are shown for the first
600 epochs. The final time point to determine outcome was 500 epochs of training. The thin black line represents the mean trajectory for the
whole population, while thicker gray lines represent individual trajectories. Sample trajectories were selected to illustrate the range of variation
within each group.
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regular verbs and novel verbs than did the resolving delay
group, but there was no difference on irregular verbs:
multivariate analysis of variance (MANOVA) for overall
profile difference, F(3, 283) = 12.22, p < .001, hp

2 = .115;
individual measures, regular, F(1, 285) = 36.84, p < .001,
hp

2 = .114; individual measures, irregular, F(1, 285) = 2.29,
p = .131, hp

2 = .008; novel, F(1, 285) = 28.00, p < .001,
hp

2 = .098. Although the differences were highly reliable, they
were of small effect size.

The Time 1 behavioral differences between persisting
and resolving delay groups were small, but were they sufficient
to reliably predict outcome group? Logistic regression analyses
were used to predict outcome group based on the profile of
performance on regular, irregular, and novel verbs. The results
are contained in Table 1, which also includes the results of Dale
et al.’s (2003) analyses that sought to predict delay outcome
based on Time 1measures of verbal ability, displaced reference,
nonverbal ability, and maternal education. Dale et al. found
that small initial behavioral differences between groups were
not sufficient for accurate classification of delay outcome and
that the addition of maternal education did not markedly
increase predictive power. Similarly, the simulation data indi-
cate that the small behavioral differences at Time 1 did not
produce accurate prediction of outcome, and addition of the
FQ variable as a predictor also produced no marked
improvement.2

The bottom row of Table 1 shows the predictive power
when each simulated individual’s neurocomputational pa-
rameters were added to the logistic regression: Accuracy of
classification was now much higher but still somewhat short
of 100%. This illustrates the operation of stochastic factors
in the model and the nonlinear interactions that occur be-
tween parameters in determining overall learning ability. It is
noteworthy that addition of the neurocomputational pa-
rameters to the analysis improved the ability to predict which
networks would have resolving delay from a position of
previously overpredicting persisting delay. This suggests that
we may find neurocomputational parameters that are mark-
ers for the resolution of delay.

Even within a single computational learning system
and even when using noise-free performance measures, the
correlation between population performance at different
time points reduced as the time points became more remote.
Time 1 performance on regular verbs predicted only 37%
of the variance in Time 5 performance on regular verbs. The
result is consistent with the empirical finding that early lan-
guage performance is the best predictor of later language
performance, but the variance explained can be relatively
modest (see, e.g., Chiat & Roy, 2008; Henrichs et al., 2011).

Time 1 performance contained some individuals with
scores at floor; this may have differentially affected irregular
verbs, which are harder to learn, thus producing the lack
of a reliable difference between persisting and resolving delay

profiles. To evaluate this possibility, we carried out the group
comparison at each subsequent time point. Of course,
differences must increase on all measures because, by defini-
tion, the performance of persisting and resolving delay groups
will diverge. However, if the initial overlap in irregular verb
performance between the groups was due to floor effects, the
effect sizes of the irregular difference should approach those of
regular and novel verbs as performance comes off floor in those
individuals. Across all time points, the effect sizes were con-
sistently larger for regular and novel verbs than for irregular
verbs. Persisting and resolving delay groups, then, were dis-
tinguished at Time 1 by small differences in the ability to
abstract the regularities of past tense morphology from ex-
posure to the learning environment, with the persisting delay
group less able to do so.

Mechanistic Explanations for Persisting Versus
Resolving Delay

To explore the mechanistic basis of the distinction
between persisting and resolving delay groups, we carried out
two complementary sets of analyses using neurocomputa-
tional parameter values to predict outcome group, either
through the use of MANOVA or multinomial logistic regres-
sion (MLR). Table 2 shows the results of a statistical com-
parison of the mean neurocomputational parameter values
for simulated typically developing, persisting delay, and re-
solving delay groups, using the two statistical methods.
Table 3 shows equivalent results for a comparison of the
resolving delay group, split by whether the final outcome was
low (bottom 500 of population), good (top 500 of population),
or very good (top 200 of population). Table 4 incorporates
the mean parameter values per group.

Both delay groups differed from the typically devel-
oping group across a range of neurocomputational param-
eters (see Table 2). The strongest effect size for the difference
between typical and persisting delay was the power of the
learning algorithm. The strongest effect size for the difference
between typical and resolving delay was the learning rate.
Individually, the delay groups did not differ from the typi-
cally developing group on the FQ variable. However, when
combined, there was a small difference that approached
significance, with delay groups showing lower FQ values,
t(998) = 1.93, p = .054, Cohen’s d = 0.136; see Figure 4.

The persisting delay group differed from the resolving
delay group across a smaller number of parameters. Indi-
viduals showing persisting delay tended to have fewer hidden
units, a higher pruning threshold (leaving the network at
greater risk of connection loss across development), a less
powerful learning algorithm, and higher processing noise.
In terms of processing roles, the more salient cause of delay
was lower computational capacity and poorer signal. By
contrast, individuals showing resolving delay had a shallower
unit activation function and a lower learning rate in the
semantic pathway. In terms of processing roles, the more
salient cause of delay in this group was lower plasticity.

Table 3 indicates which parameters predicted the
final outcome for individuals showing resolving delay.

2The prediction equations for empirical data and model were poor in
different ways, with the data equation overpredicting the resolution of
delay and the model equation overpredicting the persistence of delay.

474 Journal of Speech, Language, and Hearing Research • Vol. 57 • 467–483 • April 2014

Complimentary Author PDF: Not for Broad Dissemination



Outcome depended on the two previously identified plastic-
ity parameters, semantic pathway learning rate, and unit
threshold function. A lower semantic pathway learning rate
was associated with poorer final outcome, whereas a
shallower unit threshold function was associated with better
final outcome. As causes of resolving delay, these parameters
had differential effects on the potential final level that could be
achieved. Most notably, however, the final level of perfor-
mance was associated with the FQ parameter: the richer
the environment, the higher the final level that could be
achieved. This pattern emerged despite the relatively weak
contribution of FQ in explaining individual differences in
the population as a whole (e.g., at Time 5, FQ predicted only
2.2% of the variance in regular verb performance in the
full population; in the resolving delay group alone, FQ
predicted 8.0% of the variance).

As a minor point, for the results in Table 3, one might
ask why the semantic pathway learning rate discriminated
between the RL and RG delay groups, rather than the pho-
nological pathway learning rate. This was due to the defini-
tion of delay according to regular verb performance. Verbs
in the training set could be learned by a lexical strategy,
facilitated by the lexical–semantic input. By contrast,
generalization of the past tense rule was dependent on phono-
logical similarity. Had delay been defined according to
regularization of novel verbs, the phonological pathway
learning rate would have been the more salient parameter
in modifying rates of development.

In summary, a consideration of mechanisms suggests
the following picture. Both persisting and resolving delay
are caused by a combination of suboptimal learning param-
eters. Most salient in persisting delay is a limit on the com-
putational capacity of the learning system, which places a
ceiling on the highest level that can be achieved. Most salient
in the resolving delay is lower plasticity, which reduces the
rate of learning but does not place the same ceiling on the

highest level that can be achieved. To some extent, the final
level is then determined by the richness of the environment
in which the learning system is embedded. By contrast, the
richness of the learning environment is much less relevant to
learning in reduced capacity systems. Although early on,
the delay groups are conflated, capacity places a limit on
subsequent learning in a way that plasticity does not.

Testing a Novel Prediction of the Model
As indicated above, the model generated a novel

prediction that the amount of input available should reliably
predict outcome in the resolving delay group but not the
persisting delay group. In this section, we test this prediction
using a data set from Bishop (2005).3 Bishop (2005) analyzed
data from the large British sample of twins considered in
Dale et al. (2003) and Bishop et al. (2003). Bishop (2005)
identified a sample of the twins who exhibited language delay
risk at 4 years of age. These children, along with a sample
of twins not identified as being at risk, were tested at 6 years
of age on a test of English past tense production (Rice &
Wexler, 2001). At 6 years of age, around one third of the
early language delay risk group then met psychometric cri-
teria for SLI, compared with one in 10 of those not identified
as being at risk (Bishop, Laws, Adams, & Norbury, 2006).
From the sample, three groups of children could be iden-
tified: (a) 94 six–year-old children both exhibiting language
delay risk at 4 years of age and meeting psychometric criteria
for SLI at 6 years of age (persisting delay); (b) 104 six–year-old
children exhibiting language delay risk at 4 years of age
but not meeting psychometric criteria for SLI at 6 years
(resolving delay); and (c) 166 children exhibiting neither
language delay risk at 4 years of age nor SLI at 6 years of age

3We are grateful to Dorothy Bishop for making the raw data available to
us.

Table 1. Results from logistic regression analyses, predicting delay group (PD vs. RD).

Predictor

Fit*

% classified correctly Sensa (%) Specb (%) PPVc (%) NPVd (%)df c2

Empirical data from Dale et al. (2003)
(a) Vocabulary, displaced reference, nonverbal 3 67.0 65.8 44.6 80.5 61.4 67.7
(b) Add in gender and maternal education 5 91.1 68.5 51.5 80.0 63.8 70.7

Simulation data
(c) Time 1 behavioral markers 3 39.6 65.5 79.7 55.6 55.6 80.0
(d) Add SES proxy 4 39.7 65.2 79.7 55.0 55.3 79.5
(e) Add neurocomputational parameter set 21 113.9 79.1 72.0 84.0 75.9 81.1

Note. Item (a) contains empirical data from Dale et al. (2003, Table 6), predicting resolving delay at 4 years of age based on parental report
measures of vocabulary, displaced reference, and nonverbal ability at 2 years of age. Item (b) contains empirical data from Dale et al. (2003),
adding in gender and a measure of mother’s education. Item (c) contains simulation data predicting Time 5 delay group based on Time 1 measures
of regular verb, irregular verb, and novel verb performance. Item (d) contains simulation data adding in each individual’s family quotient parameter.
Item (e) contains simulation data, adding in the full set of neurocomputational parameters for each individual.

PD = persisting delay; RD = resolving delay; Sens = sensitivity; Spec = specificity; PPV = positive predictive value; NPV = negative predictive value.

*All c2 values are significant at p < .001.
aProportion of PD whose persisting delay was correctly predicted. bProportion of RD whose resolving delay was correctly predicted. cPositive
predictive value (PPV) = proportion of predicted PD who had persisting delay. dNegative predictive value (NPV) = proportion of predicted RD who
had resolving delay.
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(typical development). Importantly, SES data, as measured
by parental education, occupation, and maternal age at
birth, were also available for these children’s families. As
noted in the introduction to this article, SES has been shown
to correlate with language input (Hart & Risley, 1995).

As with the FQ scores in the simulation data, when
both early delay groups were combined, they yielded reliably
lower SES scores than did the typically developing group,
t(362) = 2.75, p = .006, Cohen’s d = 0.290. In this case,
the persisting delay group was also reliably lower in SES

Table 2. Neurocomputational parameters that reliably discriminated between groups.

Parameter Role

TD vs. PD TD vs. RD PD vs. RD

ANOVA MLR ANOVA MLR ANOVA MLR

Hidden units Capacity .030** 6.6* .005* 4.6* .031**
Architecture Capacity .018** 18.1** .013** 17.4**
Sparseness Capacity
Pruning onset Capacity
Pruning probability Capacity
Pruning threshold Capacity .004* .021* 5.4*
Learning algorithm Capacity/plasticity .172** 98.8** .012** 24.8** .104** 21.3**
Learning rate Plasticity .030** 16.4** .044** 33.2**
Semantic learning rate Plasticity .005* .024**
Phonological learning rate Plasticity .018** 7.0** .014** 8.6**
Momentum Plasticity .006* 4.7* .015** 12.8**
Weight variance Plasticity .009** 11.2**
Unit threshold function Plasticity/signal .036** 23.0** .025** 5.5*
Processing noise Signal .021** 19.1** .026**

Note. TD = typically developing/no delay; PD = persistent delay; RD = resolving delay; ANOVA= analysis of variance; FQ = family quotient;
SES = socioeconomic status; MLR = multinomial logistic regression. Results are shown for two complementary statistical analyses. Scores from
ANOVA show partial h2 effect sizes. Scores from MLR show Wald statistic for each parameter as a measure of effect size. Empty cells represent
nonreliable differences (p > .05). Boldface indicates use of the ANOVA method to compare group parameter means.

MLRmodel fit: TD versus all delay groups, c(72) = 411.3, p < .001, Nagelkerke R2 = .405; PD vs. RD group, c(18) = 79.9, p < .001, Nagelkerke R 2 = .328.

*Effect reliable at p < .05. **Effect reliable at p < .01.

Table 3. Neurocomputational parameters that reliably discriminated between resolving delay groups.

Parameter Role

RD-L vs. RD-G RD-L vs. RG-VG RD-G vs. RD-VG

ANOVA MLR ANOVA MLR ANOVA MLR

Hidden units Capacity
Architecture Capacity
Sparseness Capacity
Pruning onset Capacity
Pruning probability Capacity
Pruning threshold Capacity
Learning algorithm Capacity/plasticity
Learning rate Plasticity
Semantic learning rate Plasticity .053** 6.1*
Phonological learning rate Plasticity
Momentum Plasticity
Weight variance Plasticity
Unit threshold function Plasticity/signal .064** 8.6**
Processing noise Signal
Response threshold Signal
Weight decay Signal
FQ (SES) Environment .089** 11.9** .095** 12.6** .111+

Note. RD-L = resolving delay group with low outcome; RD-G = resolving delay group with good outcome; RD-VG = resolving delay group with
very good outcome. Results are shown for two complementary statistical analyses. Scores show partial h2 effect sizes.

*Effect reliable at p < .05. **Effect reliable at p < .01. +Effect significance, p = .058. Scores show Wald statistic for each parameter. Empty cells
represent nonreliable differences (p > .05). Boldface indicates use of the ANOVA method to compare group parameter means.

MLR model fit: comparison of three resolving delay groups, c(36) = 57.3, p < .001, Nagelkerke R2 = .420; pairwise comparisons: RDL vs. RDG,
c(18) = 47.135, p < .001, Nagelkerke R2 = .417; RDL vs. RDVG, c(18) = 4.844, p = .999, Nagelkerke R2 = .128; RDG vs. RDVG, c(18) = 12.951,
p = .794, Nagelkerke R2 = .567.
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compared with the typical group, but no other differences
were reliable: typically developing versus persisting delay,
t(258) = 3.18, p = .002; typically developing versus resolving
delay, t(268) = 1.44, p = .152; persisting delay versus re-
solving delay, t(196) = 1.60, p = .111. As with the FQ scores
in the simulations, the SES measure demonstrated only a
small ability to predict individual differences in regular past
tense formation, explaining only 0.5% of the variance across
all groups, F(1, 362) = 1.85, p = .175. In part, this was
due to ceiling effects in regular verb scores.

Did SES show a differential ability to predict perfor-
mance across the delay groups? Table 5 compares the results
of linear regressions between SES and past tense performance
for the Bishop (2005) sample. The persisting delay group
showed no sign of a relationship, whereas for the resolving

delay group, there was a weak trend: The higher the SES
value, the better the regular past tense performance. A com-
parison of these two relationships yielded a reliable interaction
between persisting and resolving delay groups, SES, and
regular verb performance: There was a reliably stronger rela-
tionship between SES and performance in the resolving delay
group than in the persisting delay group, F(1, 194) = 4.015,
p = .047, np

2 = .020. Finally, addition of irregular verb per-
formance from the Rice and Wexler (2001) test increased
sensitivity, with fewer ceiling scores. In this case, both typically
developing and resolving delay groups demonstrated a reli-
able relationship between SES and past tense performance,
whereas the persisting delay group did not.

In sum, a test of the novel prediction of the model
through available empirical data produced support for the

Figure 4. (a) Mean SES values for typically developing (TD), persisting delay (PD), and resolving delay (RD) groups for the children in the Bishop
(2005) study (N = 166 TD, 94 PD, 104 RD). (b) Simulation data showing mean FQ values for N = 713 TD, 118 PD, 169 RD. SES and FQ measures
have been rescaled to a common range (1 = lowest group mean, 2 = highest group mean).

Table 4. Mean values for neurocomputational parameters and environment for the groups.

Parameter Role

Group

TD
(n = 713)

PD
(n = 118)

RD-L
(n = 136)

RD-G
(n = 28)

RD-VG
(n = 5)

Hidden units Capacity 31 22 27 29 22
Architecture Capacity 1.08 .87 .93 .93 .80
Sparseness Capacity .06 .07 .06 .05 .10
Pruning onset Capacity 105 100 104 99 130
Pruning probability Capacity .14 .15 .12 .10 .15
Pruning threshold Capacity .53 .55 .51 .50 .42
Learning algorithm Capacity/plasticity .97 .66 .91 .93 1.00
Learning rate Plasticity .13 .11 .11 .12 .13
Semantic learning rate Plasticity .55 .48 .55 .74 .65
Phonological learning rate Plasticity .38 .26 .28 .32 .32
Momentum Plasticity .27 .23 .22 .23 .15
Weight variance Plasticity .53 .56 .64 .52 .70
Unit threshold function Plasticity/signal 1.29 1.24 1.14 .82 1.00
Processing noise Signal .60 .83 .59 .63 .65
Response threshold Signal .09 .04 .04 .03 .03
Weight decay (× 10–7) Signal 5.37 15.70 3.57 7.07 4.52
FQ (SES) Environment .80 .79 .77 .86 .94
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model. Despite the weak overall predictive power of SES
on performance (see, e.g., Rice et al., 1998), the resolving
delay group showed a stronger relationship with SES in their
past tense performance than did the persisting delay group.

Discussion
The current computational model was successful in

demonstrating that in a population of developing systems,
which varied along continua of intrinsic and extrinsic
parameters, early-diagnosed delay resolved in some individ-
uals but persisted in others when exposed to a language
domain. The proportion of resolving cases was similar to
that observed in empirical studies of early language delay
(Bishop, 2005; Bishop & Edmundson, 1987; Dale et al., 2003;
Paul, 1996; Rescorla et al., 2000); it was, however, less than
that observed by Whitehurst and Fischel (1994). The model
captured this pattern through quantitative variations in
learning parameters between individuals. Therefore, the
model demonstrates the viability of Leonard’s (1987) and
Rescorla et al.’s (2000) proposal that resolving and persisting
delay lie on a continuum of individual variation in rates of
language development.

The model qualitatively accorded with six further
empirical findings. First, as per Dale et al. (2003), there were
small differences in the behavioral profiles of persisting delay
and resolving delay groups when delay was first diagnosed.
In the model, these were differences in the ability to extract
the latent structure of the language domain (the regular past
tense “rule”), with the persisting group less able to do so.
Second, also as per Dale et al. (2003), these small behavioral
differences were not particularly effective in predicting indi-
vidual outcomes. Third, the model included a manipulation
of the richness of language input, equivalent to the variations
produced by differences in SES (Thomas, Forrester, &
Ronald, 2013); this manipulation accounted for only a small
amount of the variance in past tense formation, similar to
the findings of Rice et al. (1998) and the larger dataset of
Bishop (2005). Fourth, as with Dale et al. (2003), addition of
this environmental richness measure to early behavioral

differences did not improve the ability to predict delay out-
comes. Similar to the data of Bishop (2005), delay groups
showed slightly lower FQ scores than did the typically devel-
oping group, implicating environmental factors (to some
minor extent) in the cause of delay. Fifth, the model simulated
cases of late-onset delay, which also have been observed
in the literature (Henrichs et al., 2011; Ukoumunne et al.,
2011). Sixth, despite the apparently small influence of the
environmental input manipulation on the performance of the
simulated population, the model generated a novel predic-
tion that the richness of the environment should reliably
predict the developmental outcome of individuals with re-
solving delay but not those with persisting delay; this novel
prediction was subsequently supported by the empirical data
of Bishop (2005). The model indicated that although the
majority of individuals with resolving delay finished in
the low–normal range, some individuals in a rich environ-
ment finished in the top half or top fifth of the population.
Although resolving delay fell between persisting delay and
typical development on a mechanistic continuum, it was true
that some cases of early delay could completely resolve.

The advantage of a computational model is that one
can examine the mechanisms responsible for producing—or
reproducing—behavioral patterns. Variations in rates of
development were generated by small differences in a
relatively large number of neurocomputational parameters
(16 total) that influenced processing within an artificial
neural network learning system. The majority of these
parameters were implicated in causing delay. Variations in
these parameters overlapped between persisting and resolv-
ing delay groups, but differences could be discerned between
delay types. Parameters were identified by broad compu-
tational processing roles, including those of capacity, plas-
ticity, signal, and environment. Persisting delay was more
strongly associated with limits in capacity as well as noise in
the processing signal. For these networks, acquisition of
the problem domain was restricted as a result of reduced
processing resources that placed a limit on the amount
and complexity of information that could be learned. Re-
solving delay was more strongly associated with low plas-
ticity—that is, the speed of learning and the responsiveness
of the system to inputs—and with signal limitations, whereby
more precise outputs were required to drive responses, which
were not achieved until later in learning. The environment
influenced resolving delay outcomes because low plasticity
eventually allowed the learning system to take advantage of
richer information available in the environment, whereas for
persisting delay, capacity limitations made networks insensitive
to the information available in richer environments.

Model Evaluation
The model succeeded with respect to its four identified

aims: (a) to establish whether a quantitative account of
developmental variations in a population was sufficient to
generate subgroups that demonstrated persisting delay and
resolving delay or whether qualitative differences were
necessary; (b) to evaluate whether there were differences in

Table 5. Effect size (R2) of relationship between SES and
performance, per group, for the Bishop (2005) sample in English
past tense production

Group

Measure

Regular
verbs

Regular +
irregular verbs

R2 p R2 p

TD (n = 166) .002 .540 .044 .007
PD (n = 94) .017 .209 .003 .611
RD (n = 104) .028 .087 .043 .035

Note. Regular verbs, Group (PD vs. RD) × SES interaction:
F(1, 194) = 4.015, p = .047, np

2 = .020.

Regular and irregular verbs, Group × SES interaction: F(1, 194) = 2.83,
p = .094, np

2 = .014.
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the behavioral profiles of these subgroups when delay was
first diagnosed and to evaluate their ability to predict de-
velopmental outcomes; (c) to assess the role of environmental
variation in causing developmental delays or aiding in their
resolution; and (d) to investigate, in implemented situations,
the mechanisms responsible for producing cases of persisting
versus resolving delay.

The broader aim of the modeling work was to advance
a mechanistic understanding of delay, which hitherto has
either been ascribed to unspecified maturational processes,
alluded to in terms of a vague idea of processing limitations,
or remained as a largely descriptive notion. Population
modeling was used to address individual differences within a
developmental framework. Individual variation in rates of
development was caused by a combination of intrinsic
influences (neurocomputational parameters) and extrinsic
influences (the richness of the input). The result was a
population exhibiting a normal distribution of performance,
which shifted across development and which was skewed
by early floor effects and late ceiling effects (see Figure 1).
All parameters, as well as the learning environment, were
modeled as varying independently. Delay was caused by an
accumulation of suboptimal learning parameters in unlucky
individuals. Through nonlinear interactions between param-
eters, different constellations of poor parameters could lead to
subtly different behavioral profiles: Delay was heteroge-
neous in detail (as illustrated by the persisting vs. resolving
patterns) despite its quantitative origins.

The model is consistent with proposals that language
delays arise from processing limitations. It adds detail about
the form that the limitations may take and how particular
processing limitations have different effects, even if their
trajectories look similar early in development. The model
cannot, however, address the specificity of processing limi-
tations because only one system was simulated.

The population modeling approach presented here
contrasts with previous computational models of atypical
language development, which have simulated disorders
by manipulating a single parameter while holding other
parameters constant. For example, Joanisse (2004) simulated
deficits associated with SLI in inflectional morphology by
the addition of processing noise to phonological representa-
tions in a connectionist network, whereas Thomas (2005)
captured similar empirical data by altering the unit threshold
function in a past tense model (see Karaminis, 2011, for a
more general consideration of how neurocomputational
processing limitations can lead to behavioral symptoms
of SLI in inflectional morphology, syntax comprehension,
and syntax comprehension in a cross-linguistic context).
By contrast, in simulating language delay as a chance ac-
cumulation of many suboptimal computational properties,
the current simulations are more consistent with the be-
havioral genetics approach known as quantitative trait loci
(QTL), which argues that normal and abnormal behavior lie
on the same continuum of genetic variation and that with
the exception of known genetic mutations of large effect,
many behaviorally defined disorders represent the chance
accumulation of a large number of common gene variants,

each carrying a small risk for disorder—accumulations that
will inevitably occur in large populations (Kovas, Haworth,
Dale, & Plomin, 2007; Plomin, DeFries, McClearn, &
McGuffin, 2008). However, the model framework is not
committed to the assertion that processing properties are
solely under genetic influence. Variations in the processing
properties of language systems may also arise from other
environmental influences, including caregiver input. For
example, Hurtado, Marchman, and Fernald (2008) found
that measures of mothers’ speech heard by children at age
18 months predicted children’s language processing efficiency
at age 24 months, and Fernald, Marchman, and Weisleder
(2013) observed that differences in language processing effi-
ciency across SES groups were already present in children at
age 18 months.

Model Limitations
As with any implemented model, there were limita-

tions. First, our intention was to use the model as a notional
developing system applied to a structured language domain
rather than as a specific model of the acquisition of inflec-
tional morphology. This is because the target empirical
phenomenon considered disparate measures of language
ability for the early and later markers of language delay. In
many cases, delay was initially diagnosed with respect to
vocabulary, or even parents’ global concerns regarding their
children’s language development, with later assessments
considering a wider range of measures that sometimes
included morphosyntax. Used as an illustrative system, the
model evaluated the hypothesis that patterns of persisting
and resolving delay could emerge in the development of a
single system. One could argue that a disconnect exists
between the single system explored in the modeling and
the multiple aspects of language addressed in the clinical
consideration of language delay. Nonetheless, a novel
prediction generated by the model was subsequently tested
against and supported by empirical data from inflectional
morphology.

The past tense model itself involved a number of
simplifications necessitated by population modeling (Thomas,
Forrester, & Ronald, 2013). For example, the model used
an artificial past tense–like problem domain rather than a
full-scale English verb corpus. Therefore, its manipulation of
input to simulate the effects of SES could only be qualitative
rather than a reflection of the real input data experienced
by children in different family types. In addition, changes
in the intrinsic properties of the artificial neural networks
were restricted to learning properties rather than to the
structure of the input and output representations. Some
models have considered how differences in phonological or
semantic information that is supplied to learning systems can
cause variations in developmental trajectories, perhaps even
simulating SLI (Hoeffner & McClelland, 1993; Karaminis,
2011; Thomas & Karmiloff-Smith, 2003). If the key dis-
tinctions that are required to learn the latent structure of a
language domain are not present in the inputs and outputs
of a learning system, then it is clear that acquisition cannot be
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successful. Alternatively, if those distinctions are simply en-
coded less saliently (i.e., with smaller activation differences),
learning may ultimately be successful but may take longer.
In other words, it is plausible that a distinction between
persisting and resolving delay would occur if the manipulation
of input and output representations were added to the para-
metric variations. Of course, this remains to be demonstrated
with further simulations.

A further simplification of the model was that intrinsic
and extrinsic parameters were sampled independently. This
means that the model did not consider the possibility that
intrinsic and extrinsic parameters could be correlated—for
example, the possibility that there might be a correlation
between individuals who possess suboptimal computational
parameters in their language-learning systems and these in-
dividuals’ exposure to a poorer language environment. Al-
though no definitive empirical evidence has demonstrated a
correlation between, for example, children possessing gene
variants that place them at risk of language disorders and being
raised in a low SES family, such a correlation is implied now
or in the future by the combined findings that (a) language
disorders are heritable and (b) as adults, individuals with speech
and language disorders have lower SES scores (see, e.g.,
Bishop, North, & Donlan, 1995; Felsenfeld, Broen, &McGue,
1994). It is logical to presume that the children of such in-
dividuals would be more likely to inherit both genes for lan-
guage disorders and a lower SES environment. Were the model
to include a correlation between intrinsic and extrinsic pa-
rameters across individuals, this would have a greater impact
on resolving delay (where a richer environment can produce
good final outcomes) and a lesser impact on persisting delay
(where the principal limitation stems from an intrinsic re-
duction in computational capacity). However, the possibility
also exists that parents whose own (heritable) language delay as
a child subsequently resolved may not have suffered such an
impact on their SES as adults and may offer more enriched
language input to their children, compared to parents with
persisting language delay. Further evidence is required.

The simulations in this study considered only a single
learning system. Modeling should be expanded to consider
multiple systems within language, thereby (a) allowing early
delay to be diagnosed on different behaviors than those
considered later in development and (b) enabling the effects
of SES on different levels of language to be explored (see,
e.g., Noble, Norman, & Farah, 2006). The impact of var-
iation in input levels may be even more robust for a model of
vocabulary development, as suggested by the empirical data
considering SES effects on different levels of language
development (for a summary, see Hoff, 2013).

Lastly, despite the empirical effects that were success-
fully simulated by the model, it could, of course, turn out to
be wrong: Implemented models serve to demonstrate only
the viability of theoretical proposals; they cannot demon-
strate the truth of those proposals. It could be that persisting
and resolving delay are qualitatively different—or that some
instances of persisting delay are qualitatively different. It
could also be that a proportion of the cases of resolving delay
arise from the way in which early delay is diagnosed, so that

early assessments of vocabulary bring together a heteroge-
neous sample of children, only some of whom will have
subsequent deficits in morphosyntax that are characteristic
of SLI. Should there be wider (or different) causes of vo-
cabulary delay than grammar delay, and should diagnoses
of delay weigh heavily on the ability that is being measured,
then the resolution of delay may turn out to be a mea-
surement artifact. In that case, the current approach of
tracing developmental trajectories in a single model system
would not be appropriate.

Implications
The main findings of the computational modeling

work are twofold. First, mechanistically, it is viable that
persisting and resolving delay both represent limitations in
the processing properties of the language system and are only
quantitatively different. Second, there may be an interaction
between environmental factors and outcome groups, with
individuals with resolving delay being influenced more by the
richness of the language environment.

The first finding places the model in accord with theories
that have explained language delay by appealing to notions
such as slower processing speed (Miller et al., 2001), restrictions
in working memory capacity (Ellis Weismer et al., 1999),
or reduced efficiency of resource allocation across domains
(Im-Bolter et al., 2006). Implementation demonstrated how a
number of low-level neurocomputational parameters could
lead to delay, sometimes acting in concert. We characterized
these as having broad effects on capacity, plasticity, signal,
and regressive events.

The interaction of environmental influence with out-
come group accords with Anushko’s (2008) finding that in a
sample of 230 children whose language trajectories were
followed between 15 months and 6 years of age, those children
accelerating from the lower performing group to the higher
performing group had significantly more exposure to and
experience with language through book-reading activities,
compared with peers in the low-growth group. The model
suggests a clearer framing of the role of environmental input:
It is not the cause of early language delay—delay is the result
of the intrinsic property of low plasticity; however, in cases
where low plasticity is the cause of delay, greater experience
with language can maximize subsequent outcomes.

The cause of variation in processing properties could
be under genetic or environmental control. A twin study
carried out by Bishop et al. (2003) found lower heritability in
language scores for cases of resolving delay, higher herita-
bility for language scores for cases of persisting delay in those
children whose parents went on to seek professional help,
and significant environmental involvement in both cases.
This finding is consistent with the greater environmental
influence in cases of resolving delay, but it also implies that
environmental influences affect processing properties (as
observed, for instance, by Hurtado, Marchman, & Fernald,
2008). Environmental variation may also have a different
influence depending on the absolute level being considered.
Thomas, Forrester, and Ronald (2013) argued that from
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lower middle class upward, the influence of SES on language
development may operate more via the information content
of the environment, but as poverty and deprivation increase,
SES may operate more via an influence on neurocompu-
tational processing properties. This would explain whyNelson
et al. (2011) identified so many cases of clinical language
delay in the sample of children in poverty, whereas Zubrick
et al. (2007), with a more representative sample, determined
that persisting delay was best predicted by family history
of late language, male gender, and early neurological growth
rather than by environmental factors.

An important clinical priority is to identify markers
that can predict the outcome of early-diagnosed language
delay. Measures of language processing efficiency hold
promise in this regard (see, e.g., Fernald & Marchman,
2012). It remains to be seen whether such early measures can
distinguish between processing differences in capacity versus
differences in plasticity, which the computational model
argues are crucial for predicting long-term outcomes in
language development. That is, environmental factors may
only impact processing properties at low SES levels. Poor
processing properties at higher SES levels may tend to stem
from genetic variations.
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