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      Chapter 3

   Introduction 

 In this chapter, we consider how computer models are being used to advance 
our understanding of learning within education. By the notion of ‘model’, 
we mean a simplified representation and implementation of a phenomenon 
that captures the key theoretical principles of its operation. In the case of 
computer models, the  implementation of the model is in the form of a com-
puter program. 

 In educational neuroscience, computers are employed as model systems in 
two different but related ways. First, computers are used to understand the 
 cognitive mechanisms  that underlie the learning process. Second, computers are 
used as  teaching tools  that model the interaction of the teacher with the learner; 
these tools can take the form of  intelligent tutoring systems  or  adaptive micro-
worlds . Cognitive models and computer-based teaching tools are related in that 
both require an  understanding of the learner and the way in which particular 
sets of experiences and kinds of feedback can advance the learner’s knowledge. 
Indeed, some computer  programs have been employed both as cognitive models 
and as the basis of intelligent tutoring systems (see the later example of ACT-R). 
The two uses differ in that for cognitive models the target of the model is the 
learning process taking place within the child or adult, while for the teaching 
tools the target of the model is the behavior of the human teacher and his or her 
interactions with the learner. 
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 Both approaches are concerned with  individual differences . Cognitive 
 modeling seeks to understand the causal mechanisms – be they of genetic or 
environmental origin – that lead to differences in learning outcomes. For the 
teaching tools, intelligent tutoring systems seek to tailor the knowledge and 
tasks that the individual learner must revisit to acquire a specific domain, 
given the successes and failures he or she has exhibited on previous tasks (an 
 instructivist  pedagogic model). Adaptive microworlds contain a model of 
how a user can interact with a domain to construct an object or event; the 
program then adapts the difficulty of the task goal to the individual learner’s 
performance on the last task (a  constructionist  pedagogic model). 

 In terms of the dialogue between education and neuroscience, cognitive 
 modeling demonstrates one active interface between the disciplines.  Artificial 
neural networks  are used to build models of learning based on the computational 
principles observed in actual neural circuits. To the extent that these cognitive 
models are successful, they will uncover the nature of knowledge representa-
tions in the learner, as well as the sequence of knowledge development. In the 
future, they may thus inform computer-based teaching programs. 

 Our review of computational methods is structured as follows. In the first half 
of the chapter, we discuss the use of computers as cognitive models. We discuss 
why building explicit, implemented models is an effective way to advance our 
understanding of the nature of learning, and we summarize the general princi-
ples and aims of building such models. We discuss two of the main approaches 
to building models of the cognitive system, the  symbolic  and  subsymbolic  
approaches. The subsymbolic approach makes widespread use of artificial neural 
network models. We consider the way in which such models have been inspired 
by neuroscience research into the principles of computation in the brain and 
how artificial neural networks have certain properties that make them well 
suited to modeling cognitive mechanisms of learning. By way of illustration, we 
describe research in which a large population of artificial neural networks is 
used to simulate individual differences in rates of language development, and 
which addresses the specific educational issue of why language delay, when diag-
nosed early in children, sometimes disappears of its own accord, but other times 
persists and requires intervention. We finish the first half of the chapter with a 
look to the future, in how computational models of learning may advance 
beyond current limitations to enrich our understanding of the plethora of phe-
nomena that represent the educational experience. 

 In the second part of the chapter we discuss the use of computers as teaching 
tools. We summarize the key properties of educational models of teaching 
and  learning. We then describe the components of two different digital 
learning environments, intelligent tutoring systems and adaptive microworlds. 
In each case, we make reference to the pedagogical theories that they embody. 
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We illustrate the second of these approaches with an example of an adaptive 
microworld designed to address weaknesses in the understanding of number 
sense found in children with dyscalculia, a specific deficit in the learning of 
mathematical skills. 

 Finally, although the approaches of cognitive modeling and computer-based 
teaching tools are conceptually related, it will become apparent that they some-
times use terms and ideas in different ways, and approach their account of the 
process of learning from different directions. We use the example of  feedback  to 
highlight where the approaches line up and where they do not. We finish with a 
summary of the main points of the chapter. 

   Computational Models of Cognition 

  The use of models to understand mechanisms of learning 

 At the heart of education lies the concept of learning – facilitating change in 
knowledge and abilities over time. Computational systems can provide models 
to understand the cognitive processes underlying learning. Such models are 
formal systems that track the changes in information processing that take place 
as a behavior or skill is acquired. Models are generally implemented as psycho-
logically constrained computer simulations, which learn tasks such as reasoning, 
concept formation, and language and literacy skills. 

 To date, models have mainly been applied to the study of cognitive development, 
focusing in particular on how transitions are achieved from one level of compe-
tence to the next via experience and/or maturation. Models have been used to 
probe questions such as how much ‘preprogrammed’ or innate knowledge exists 
in the infant mind, and how the sophistication of reasoning can increase in chil-
dren with age and experience. Education differs from cognitive development with 
respect to the assumed learning environment. Whereas development reflects what 
the learner discovers through interaction with his or her natural physical and 
social environments, formal education concerns the acquisition of knowledge and 
skills accumulated by a culture across many generations. The extended, structured 
learning environments provided by education are powerful enough to sculpt new 
brain systems, such as those involved in reading and mathematics. Education is 
built on the foundation of cognitive development, and, with respect to the innate 
component of cognitive development, education both takes advantage of inher-
ited mechanisms of brain plasticity and is also constrained by the types of 
knowledge representation that the mind can support. 

 Computer models have proved invaluable tools to help developmental psy-
chology shift from a descriptive science into a mature explanatory science 
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(Mareschal & Thomas,    2007 ). A descriptive science deals in summaries of 
 observations of what happens – in the case of development, the abilities that 
children exhibit at different ages. An explanatory science deals in mechanism – 
revealing the underlying causal processes that give rise to the observed behavior. 
The construction of computer models has aided the shift to an explanatory 
 science of development because, when researchers have to translate their under-
lying theories into explicit computer models, they must specify precisely what is 
meant by the various terms in the causal theory. Terms such as  representations , 
 symbols ,  variables , and  learning  must have an exact definition to allow imple-
mentation. The degree of precision required to construct a working computer 
model avoids the possibility of arguments arising from the misunderstanding of 
imprecise verbal theories. For example, the idea of “attention” conveniently sum-
marizes a cluster of human behaviors. Yet it is another thing to build a processing 
system that has the ability to select certain sorts of information for enhanced 
processing. How does the system select what information to attend to, and how 
is the processing of attended (and unattended) information altered? There is no 
longer room for vagueness when building a working model of the process. 

   General principles and aims of computational models of learning 

 A cognitive computational model of the learning process usually comprises the 
 following four elements. First, there is a  computational system , of which there are 
different varieties. A computational system is a mechanism that acquires, stores, 
and manipulates information, which it can use to drive behavior. Second, there 
are   representations of information . Some of these representations are specified by 
the modeller and correspond to the information supplied to the system by its 
simulated environment, along with the output responses that are required to 
generate the  requisite behavior (e.g., behaviors such as naming a word, giving 
the number that is the answer to a mathematic problem, or inferring the intended 
meaning of an analogy). Other representations of information may be devel-
oped by the computational system itself during the learning process – this is the 
information the system needs in order to generate the appropriate behavior, 
given the input with which it is supplied. Third, the model has a  learning 
algorithm . This is a process by which the system alters its internal structures to 
improve its performance on the target problem, given feedback on its current 
performance (see the later section on Feedback for more detail on types of 
feedback in computer learning systems). Fourth, there is a  training set , 
corresponding to the problem domain that the model must learn. Training sets 
can be supplied externally by the modeler. Alternatively, the modeler can con-
struct an artificial microworld in which the model generates its own training set 
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by its behavior and subsequent experiences in the artificial microworld. The 
microworld may  contain other individuals (or  agents ) with which the model can 
interact. In addition, modellers sometimes test the learning system on a  general-
ization set , corresponding to novel problems within the target domain. Success 
on a generalization set ensures that the model has learnt the general principles 
of the problem domain, rather than just memorizing the individual items in the 
training set. 

 There is a wide range of possible computational systems that can serve as 
models for learning in the cognitive system (see, e.g., Mitchell,    1997 , and Sun, 
   2008 , for introductions to different types of machine learning system). These 
include concept learning, decision tree learning, artificial neural networks, 
Bayesian (probabilistic) learning, instance-based learning, genetic algorithms, 
and reinforcement learning. One broad distinction that has characterized com-
putational models of development in particular is that between  symbolic  and 
 subsymbolic  models. Researchers using  symbolic  models maintain that cognition 
is best characterized as a rule-governed physical symbol system, such as a con-
ventional computer program. In this view, cognitive development consists in the 
construction and modification of mental rules. By contrast, researchers using 
 subsymbolic  models view cognition in terms of a highly interactive dynamic 
system, such as an artificial neural network. An artificial neural network con-
tains simple processing units, each with an activation level  analogous to the 
firing rate of a neuron. The processing units are wired together in networks with 
weighted connections. The strength of the connection between any two units 
determines how much the activity of one unit can affect the subsequent activity 
of the other. Networks can learn tasks as transformations between different 
activation states. They do so by gradually changing the strength of the connec-
tion weights to produce the appropriate activation states, based on information 
from the environment. In this type of system, the causal entities are not rules but 
continuous activation states distributed across the network, states that some-
times cycle over time. Such networks do not operate as physical symbol systems, 
or at best  approximate them in certain narrow circumstances. That is, the net-
works sometimes show   rule-following  behavior, without being  rule driven . In a 
subsymbolic framework, both learning and development consist in the contin-
uous tuning of the underlying parameters of the cognitive system (for a network, 
these parameters are the connection weights), in order to bring the responses of 
the system closer to the desired behaviors. 

 In symbolic models, encoded knowledge can be clear and transparent. In some 
cases, it corresponds to a rule-based description of the observed behavior (e.g., 
the rules for addition and subtraction in a system that performs arithmetic). Rules 
can be very powerful in producing a range of complex behaviors (e.g., the rules of 
grammar can be used to generate an infinite variety of sentences). In subsymbolic 
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models, it can be less obvious what knowledge is encoded, since dynamic patterns 
of activation across a network of simple processing units may not be directly relat-
able to behavior. Given the task presented at input, the activation patterns must 
simply serve to provide the correct answer at output. Most symbolic models have 
emphasized the transparency of knowledge representations involved in cognitive 
development at the expense of implementing mechanisms for the acquisition of 
new knowledge and abilities. That is to say, it has proved difficult to understand 
how systems that run according to rules learn new sets of rules, particularly rules 
that are more sophisticated than those previously operating in the system. In con-
trast, most subsymbolic models have emphasized the specification of a learning 
mechanism for incrementally improving behavior on a problem domain, at the 
expense of the transparency of the knowledge representations that the system 
acquires. In short, symbolic models have more transparent workings but do not 
readily capture the process of learning, while subsymbolic models are good at 
learning but their internal functioning is more opaque. 

 For researchers in psychology who investigate the nature of the mind and the 
nature of development, the different learnabilities of, respectively, rules and 
activation patterns has led to a conundrum. To the extent we think that the human 
mind needs complicated and densely structured mental representations to deliver 
a cognitive skill, it is hard to fathom how these representations are learned. There 
are three ways out of this conundrum (Mareschal & Thomas,    2006 ).  Either  com-
plex behavior is generated by representations that are in large part innate (i.e., not 
learned at all; Chomsky’s theory of universal grammar would provide one example 
of such an approach in the field of language development – this is the idea that 
humans easily acquire complex language because we are born with a blueprint for 
grammar),  or  we do not yet understand the full repertoire of learning mecha-
nisms available to the human mind (that is, somehow complex mental represen-
tations are learnable in a way we have not yet understood),  or  we are currently 
overestimating the complexity of the representations that the human mind needs 
to generate its complex behaviors. 

 How does a researcher tell if he or she has constructed a good model of a 
certain cognitive process? Certainly the model should reproduce the behaviors 
observed in people. A model of learning should be able to learn the skills that 
people can learn, be unable to learn the skills that people cannot learn, and 
should exhibit the same trajectory of learning, including the same kinds of error 
that people make when they are going through the process of learning. 

 However, the evaluation of a model can be more nuanced. A model must be 
constrained by empirical psychological evidence. No “unrealistic” components 
or processes should be included to make the model work. For instance, a model 
of learning to read should encode written words (orthography) in the way we 
believe children do, and encode spoken words (phonology) in the way we believe 
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children do. This does not necessarily mean it should have a visual system to 
recognize the written words and a mouth to pronounce the spoken words. It 
does mean that the information it receives about written words should be similar 
to what we know the visual system extracts from the page, and the information 
it outputs should respect the structure of spoken sounds, in terms of articulatory 
features. Next, the model should be exposed to the same kinds of learning expe-
rience that children are, such as the juxtaposition of written and spoken letters 
and words. Moreover, the model should contain a learning mechanism that we 
think could plausibly operate in the mind. However, a model will necessarily 
contain simplifications (such as the lack of eyes to read words and a mouth to 
speak them). It is, after all, a model intended to capture the key principles of the 
process under study, rather than duplicating the system in every regard. 

 A cognitive model should be evaluated according to several criteria. (i) Does 
the model simulate human behavior in the target domain? (ii) Does it help  explain  
why the human behavior occurs? (This requires that the modeller understands 
why the model works!) (iii) Is the model successful in simulating the target 
behavior due to its key design principles – the theory that the model embodies – 
or due to its design simplifications (fixes that the researcher has used to get the 
model to work)? If the answer is the former, the model can be viewed as a dem-
onstration of the viability of the theory it embodies. (iv) Does the model explain 
a range of behaviors rather than just one (i.e., is it parsimonious)? Finally, (v) can 
the model generate any new behaviors observable under different conditions 
(e.g., in novel situations, or perhaps when the model is damaged in certain ways); 
that is, does the model generate novel predictions that can be corroborated by 
subsequent psychological experiments with people? 

   Examples of symbolic and subsymbolic cognitive models:  
ACT -R and artificial neural networks 

 One widely used symbolic model of cognitive processing is called ACT-R 
(Anderson,    2007 ; Anderson & Lebiere,    1998 ). ACT-R stands for Adaptive 
Control of Thought – Rational. The system is intended as an overarching 
cognitive architecture, capturing how the whole mind works. The key compo-
nents of ACT-R are inspired by processing distinctions observed in the brain, 
and in particular the distinction between declarative memory (explicit facts and 
knowledge) and procedural memory (implicit knowledge and skills). The system 
has different specialized components that reflect this distinction. 

 At the heart of ACT-R lie procedural IF–THEN rules. If a certain set of condi-
tions hold, then a certain behavior is produced. The system has working mem-
ories or buffers of current knowledge, reflecting both new inputs and its previous 
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processing states. The system’s library of rules competes to find the rule that most 
closely matches the current state of the buffers. The winning rule then produces 
the subsequent behavior. When the rule is executed, it may then alter the 
knowledge in the buffers, which triggers the next winning rule, and so forth. In 
ACT-R, cognition proceeds as a succession of rule operations. ACT-R is symbolic 
in the sense that it contains discrete variables and syntactic rule-based operations, 
although the performance of the system may also depend on what is referred to as 
‘subsymbolic quantities’, such as the strength of productions, and the base level of 
activation for a chunk of knowledge (Anderson & Schunn,    2000 ). ACT-R has 
been used to model a variety of cognitive processes including memory, attention, 
executive control, language, and problem solving. 

 Two further points are of note. First, as we saw in the previous section, 
cognitive models that rely on rule-based representations struggle to find a ready 
means to learn new rules. In keeping with this, ACT-R has found relatively little 
application to modeling cognitive processes involved in learning and 
development. Second, as we shall see in the second half of the chapter, ACT-R 
has nevertheless been successfully used as the engine on which intelligent tutor-
ing systems are based. 

 One widely used subsymbolic model of cognitive processing is the artificial 
neural network (Rumelhart & McClelland,    1986 ; Spencer, Thomas, & 
McClelland,    2009 ; Thomas & McClelland,    2008 ). As we have seen, artificial 
neural networks are abstractions that capture some of the key properties of com-
putation carried out in neural circuits. The brain comprises a large number of 
neurons that electrically signal to each other via highly connected networks. 
Artificial neural networks  contain simple processing units, each with an 
activation value, and a network of connections through which the activity of 
each processing unit can influence the activity of other processing units. A key 
property of neural systems is that they are adaptive. The strengths of the connec-
tions between units can be altered incrementally to bring the network’s output 
closer to the desired behavior given its inputs. Many of the artificial neural 
 network learning algorithms are based on  Hebbian learning  (Hebb,    1949 ), the 
principle that “units that fire together should wire together”. In other words, if 
two units are firing at the same time, they are probably both involved in 
performing the same computation; therefore, the connection  between them 
should be strengthened so that they encourage each other to fire when the units 
receive equivalent inputs the next time around. 

 As they learn, artificial neural networks are able to develop their own internal 
representations of knowledge over their banks of processing units. Artificial 
neural networks are subsymbolic in the sense that information is encoded as 
continuous patterns of activation. As we saw in the previous section, these 
 representations of knowledge are not necessarily transparent in what information 
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they contain. When used as cognitive models, artificial neural networks  therefore 
emphasize the learning of new abilities at the expense of the transparency of the 
exact knowledge that is being acquired. Artificial neural networks have been 
used to model a wide range of developmental phenomena, including perceptual 
learning and object-oriented behaviors in infants, language and literacy acquisi-
tion in children, and the development of reasoning in children (Elman et al., 
   1996 ; Mareschal & Thomas,    2007 ). In addition, these models have begun to pro-
vide a platform to understand development and individual differences within 
the same explanatory framework: that is, why children of the same age should 
differ in their abilities, and the respective role of genetic variation and environ-
mental variation in generating these  differences (see, e.g., Thomas, Baughman, 
Karaminis, & Addyman,    2012a ; Thomas, Forrester, & Ronald, in press; Thomas, 
Knowland, & Karmiloff-Smith,    2011 ). In the next section, we outline an example 
of an artificial neural network model of  language development that illustrates 
these points, as well as more general principles of the construction and evalua-
tion of cognitive models. 

   An example of cognitive modeling in educational neuroscience: 
individual differences in language development 

 One central concern of cognitive modeling within educational neuroscience is 
the issue of  individual differences . What are the genetic and/or environmental 
causes of differences in learning outcomes? An understanding of these causes 
may help us optimize learning outcomes for children with different abilities or 
from different backgrounds. So why do children learn at different rates? While it 
is long established that individual differences can have both environmental and 
genetic causes, there is a lack of detailed cognitive modeling that stipulates how 
these influences unfold in generating behavior. For example, there has been a 
recent renewal of interest in how  socioeconomic status  (SES) affects children’s 
development and their educational  outcomes (Hackman & Farah,    2009 ). 
However, SES is associated with many differences in children’s physical and social 
environments, and it is unclear which causal pathways are responsible for the 
observed variation in developmental outcomes. One possibility considered 
within the field of language development is that SES is associated with differences 
in the quality and quantity of the  information  (in this case, language input) to 
which the child is exposed (see Chapter 6, this volume, for a wider review of rel-
evant issues in language development). In lower-SES families, there is simply less 
language directed towards the child (Hart & Risley,    1995 ). Targeting the role of 
language input more precisely, Huttenlocher, Vasilyeva, Cymerman, and Levine 
(   2002 ) found that the proportion of complex sentences produced by teachers 
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 predicted 18% of the variance in the improvement in children’s performance on 
a syntax comprehension task over a year of preschool. Differences in language 
input appear to be an important (if not sole) contributor to differences in rates of 
language development across the SES range of developed countries. 

 Thomas et al., (in press) built a cognitive model of the acquisition of one aspect 
of English grammar, the English past tense. The model was designed to capture 
the range of developmental trajectories of a large population of simulated chil-
dren, and incorporated individual differences from both intrinsic sources (i.e., 
the power of the learning mechanism each child had) and extrinsic sources (the 
quality of the environment to which the child was exposed, by hypothesis influ-
enced by SES). Population-level modeling is a relatively recent innovation, which 
has become  possible through increases in computational power that allow thou-
sands of models to be run rather than just a few (Thomas et al.,    2012a ). The 
Thomas, Forrester, and Ronald model is illustrated in Figure   3.1  . It comprised an 
artificial neural network, with a phonological representation of the English verb 
stem at input, along with information about the verb’s meaning, and a phonolog-
ical representation of the past tense at the output. The network was exposed to 
verb stem–past tense pairs for both regular and irregular English verbs (e.g., 
knock–knocked; think–thought), and underwent an extended developmental 
trajectory as it acquired this aspect of grammar. The model aimed to capture 

“K   N    O    C    K ED”

“K   N    O    C    K”

Environmental variability
(e.g., socio-economic status)

Genetic variability

Influences

Influences

 Figure 3.1     An example of a cognitive model of one aspect of language acquisition, 
based on an artificial neural network. The model learns to form the past tense of English 
verbs. The model simulates a population of learners who show individual differences in 
their learning due to variations in learning abilities and environments. 
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empirical data from Bishop (   2005 ), which reported the effects of SES on the 
acquisition of English past tense for a sample of 300 six-year-old children. For 
these children, regular past tenses were produced more accurately than irregular 
past tenses. SES explained around 1% of the variation in children’s regular-verb 
performance but around 5% of the variation in irregular-verb performance. 

      The model succeeded in capturing the predictive power of SES that was 
observed in the empirical data, and in particular the greater predictive power of 
SES on  irregular than regular verbs. The model suggested that the empirical data 
were best captured by relatively wide variation in learning abilities of children 
and relatively narrow variation in (and good quality of) environmental 
information. The model served as a demonstration of the viability of the theory 
that variations in language input are one causal pathway through which SES may 
operate. In addition, the model generated a novel prediction not previously con-
sidered by any researcher: it predicted that SES should reliably predict  gifted  
performance in children (e.g., whether a child would fall in the top 10% of the 
population) but not  delayed  performance (e.g., whether the child would fall in 
the bottom 10%). This surprising prediction was subsequently borne out by the 
Bishop (   2005 ) data set. 

 In a follow-up paper, Thomas and Knowland (submitted) used the model to 
focus on an important current issue in the field of developmental language dis-
orders. It is optimal to diagnose language delay in children early on (say, at three 
or four years of age) in order to optimize chances for effective intervention. 
However, of the children diagnosed with delay at this young age, over half 
 subsequently have their delay resolve of its own accord without the need for 
intervention. Early intervention is therefore optimal but risks treating children 
in whom (potentially costly) intervention is unnecessary. Thomas and Knowland 
used the population-modeling technique to focus on the issue of the outcome of 
early-diagnosed delay. Figure   3.2   shows how simulated children were diagnosed 
with delay (here defined as falling more than one standard deviation below the 
population mean) at five different developmental time points. Figure   3.3   sum-
marizes the number of simulated children with delay at each time point – and 
confirms that in the model, too, the number of cases of delay fell by over half 
from the first to the fifth time point. Thomas and Knowland then examined the 
cases of persisting early delay and resolving early delay in more detail, tracing 
individual trajectories. Several of these trajectories are displayed in Figure   3.4  . 
There were in fact four patterns of development: typical development, persisting 
delay, resolving delay with low–average final outcome, and resolving delay with 
good final outcome. 

                At this point, the investigation focused on what properties differed between 
these four groups, in terms of both the environmental conditions and the learning 
properties of the artificial neural networks. Artificial neural networks have a 
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range of properties that can alter how much information they can learn and how 
quickly they can learn it. We can refer broadly to these properties as the  capacity  
and  plasticity  of the system. Capacity is affected by, for example, how many units 
and connections there are inside the network. Plasticity is affected by how quickly 
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 Figure 3.4     Example developmental trajectories showing four different patterns: typical 
development (green); persisting developmental delay (red); resolving delay with low–
average final outcome (turquoise); and resolving delay with good final outcome (dark blue). 
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connection weights can alter their strength when the network is required to 
change its behavior. Combined with the quality of the learning environment, the 
properties of capacity and plasticity allowed Thomas and Knowland to distin-
guish between the four groups. 

 The results are shown in Table    3.1  . When development was delayed, this 
could arise from limitations in capacity or plasticity. Persisting delay was asso-
ciated with limitations in capacity, while environmental conditions seemed 
unimportant. Resolving delay was associated with limitations in plasticity, i.e., 
it took these learners longer to adapt and they learned at a slower rate. 
Crucially, for this second group, the quality of the environment then predicted 
the final level of performance after the delay had resolved. A rich environment 
(high SES) was associated with good final outcome, while poorer environ-
ments (lower SES) were associated with low–average final outcome. Once 
more this was a prediction that had not arisen from any previous theory, and 
once more the prediction was confirmed in the data set of Bishop (   2005 ), for 
a large sample of British children who were diagnosed as at risk of language 
delay aged four, and whose past-tense abilities were then tested at age six. The 
next step of this research program is to isolate behavioral or neural markers 
that can distinguish low capacity from low plasticity in the early diagnosis of 
 language delay, and so narrow the focus of  language interventions. 

  This example of a cognitive model illustrates several of the design principles 
we introduced earlier. The model was aimed towards capturing the acquisition 
of a specific task domain. It comprised a computational system – an artificial 
neural network; representations of information – phonological encodings of 
English verb stems and past tenses, along with information about their 

 Table 3.1   Computational causes of the four types of developmental trajectory.           

Computational 
Plasticity

Computational 
Capacity Environment    

  

Normal Okay Okay Okay

  Persistent deficit Okay / low Poor Okay

  Resolving     
low-normal

Low Okay Poor

  Resolving 
normal

Low Okay Good
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meaning; a learning algorithm – in this case backpropagation, a supervised 
learning algorithm (see later, in “Feedback”), which is itself a variant of 
Hebbian learning (Thomas & McClelland,    2008 ); and a training set – pairs 
of English verb stems and their associated past tenses. The model was evalu-
ated according to how well it simulated real empirical data – children’s ability 
to learn regular and irregular English past tenses, and the influence of SES on 
individual differences in this ability. It was evaluated by the extent to which it 
achieved this success via its design principles rather than simplifications – in 
this case, the theory being implemented was the idea that SES corresponded to 
differences in the richness of the language information in the environment to 
which the child was exposed, against a background of individual differences in 
learning ability. The model was further evaluated against its ability to explain 
a range of phenomena – in this case, both normal language development, 
gifted language development, and delayed language development. Moreover, 
the model was evaluated against its ability to produce novel empirical predic-
tions, which were then borne out by real empirical data – in this case, the 
model predicted differential effects of SES on gifted versus delayed language 
development, and on different types of delayed development, both of which 
were subsequently confirmed. 

   The broader perspective: neuroconstructivism and education 

 In the previous section, we described a cognitive model aimed at capturing the 
influence of variations in the environment on children’s language development. 
This model used an artificial neural network as its basic computational system. 
Such networks embody principles derived from neuroscience, and in this way 
cognitive-level modeling provides a link between neuroscience and the overt 
aspects of children’s behavior that are the central concern of education. 
Nevertheless, this is only one model, targeting a fairly circumscribed aspect of 
language acquisition. It is also important to consider the broader perspective 
that this theoretical approach implies, and its potential impact on educational 
theories. 

 The idea that neuroscience principles should influence cognitive-level the-
ories of learning amounts to the proposal that the way a cognitive system (the 
“mind”) is implemented in the brain makes certain ways of thinking and learning 
easier and others harder. One cannot, therefore, derive a theory of cognition 
without reference to how the brain delivers cognition.  Neuroconstructivism  is 
one theoretical approach that has recently attempted to flesh out this idea (Elman 
et al.,    1996 ; Mareschal et al.,    2007 ). In particular, neuroconstructivism builds on 
the Piagetian view that development corresponds to the progressive elaboration 
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in the complexity of mental representations via experience-dependent processes, 
enabling new competences to develop based on earlier, simpler ones ( construc-
tivism ).  Neuro -constructivism also incorporates recent theories of functional 
brain development, proposing that the increase in representational complexity is 
realized in the brain by a progressive elaboration of functional cortical struc-
tures (see Sirois et al.,    2008 ; Thomas et al.,    2008 ; Westermann et al.,    2007 ; 
Westermann, Thomas, & Karmiloff-Smith,    2010 ). 

 One might well ask, then, which principles of brain function should 
influence the formation of cognitive theory? Here are five such principles. 
(1) The brain uses  partial representations of knowledge : whole concepts are 
rarely used, only the dimensions of knowledge required to drive particular 
behaviors relevant to the current context of action. Whole concepts may, 
indeed, be rarely acquired. (2)  Contextualisation :  mechanisms always act in 
context – genes operate in the context of other genes, neurons operate within 
the context of a neural network, brain regions operate within the context of 
a set of brain regions, the brain operates within the context of the body, and 
the individual operates within the context of a culture and society. (3)  Timing : 
the timing of developmental events can be crucial, so that the same event 
happening at different times can have different consequences. (4)  Emergent 
specialization  (and brain localization): systems become more specialized 
with development, tuning their function to particular domains depending 
on experience. For example, within vision, dedicated systems for face recog-
nition and written word recognition are experience-dependent specializa-
tions of an initially more general object recognition system. (5) Developmental 
events in the brain must be construed within the wider  framework of  evolu-
tionary developmental biology : an adaptive framework informs the functions 
established during brain development. What has evolution designed the 
system to do, and what are the neural constraints fashioned into the struc-
ture of the brain that allow the individual to achieve that goal when the child 
is raised in a normal  environment? How can these constraints respond to 
novel environments, such as the evolutionary novel (cultural environment) 
of literacy and numeracy? 

 These ideas are recent enough that their implications for educational theory 
have not yet been fully explored. In respect of  timing , for example, research has 
begun to focus on what sensitive periods in brain development may mean for 
the timing of the delivery of educational curricula (e.g., Thomas,    2012 ; Thomas 
& Knowland,    2009 ). In some cases, this work has once more relied on the use of 
computational modeling to connect neuroscience principles to high-level 
behavior (Thomas & Johnson,    2006 ). However, it is likely that there are more 
deep-seated implications for education to be derived from the neuroconstruc-
tivist thesis. For example, the notion of  partial  representations  of knowledge 



62 Michael S. C. Thomas and Diana Laurillard

Chapter No.: 1 Title Name: Mareschal
Comp. by: Sivaranjini Date: 29 Jul 2013 Time: 04:04:03 PM Stage: Proof Page Number: 62

 suggests that different dimensions of a concept are activated according to con-
text. This means that knowledge may be intrinsically bound by context, including 
during its acquisition. 1  In turn, this implies that the acquisition of a full, abstract 
concept requires exposure to all contexts of its usage. To give a concrete example, 
a child may learn that 5 is a number that falls between 4 and 6; that 5 is the result 
of  summing 1 and 4; that 5 is the result of dividing 10 by 2. But each of these 
reflects the use of the number 5 in a given context. The ultimate goal of learning 
is to acquire the decontextualized concept: to learn that 5 is just 5. Constrained 
by modes of brain function, the child will always begin by acquiring concepts in 
a perceptual and contextually bound fashion. This predicts that multiple con-
texts of presentation must be deployed to liberate concepts from the shackles of 
context and the sensorimotor conditions of their acquisition, in order to con-
struct the abstract idea. The abstract idea is then applicable across a range of 
situations including ones that the child is yet to encounter. 

   The future of cognitive modeling in education 

 Although cognitive modeling is a powerful method to advance our theories of 
learning and development, there are a number of reasons why this approach is 
currently somewhat limited with respect to education. This is because many of 
the central phenomena in education are among the most psychologically com-
plex – involving the social context of the classroom, the dynamics of the inter-
action between learner and teacher, and the combination of knowledge and 
motivation. Current models are limited for several reasons: because they are 
insufficiently complex – though, as we saw earlier, models must retain some 
degree of simplicity to serve their explanatory goals – and because models cur-
rently target individual cognitive systems or components within that system, 
which makes it hard to capture the dynamics of learner–teacher interaction, or 
the community phenomenon of a classroom. Finally, there also remain unre-
solved debates within the study of cognition: what do representations of 
high-level conceptual knowledge look like? How does meta-cognition work? 
How do emotions, rewards, and motivation mediate learning? 

 Nevertheless, one can sketch out a picture of how the cognitive modeling 
approach could contribute to education in the future. Its ultimate aim will be 
to  optimize the timing, regimes, and contexts of learning by understanding 

1     See Thomas, Purser, & Mareschal (   2012b ) for a computational modeling treatment of this idea, 
and in particular the proposal that the importance of language in problem-solving is that it allows 
the individual to bring to bear information that is not suggested by the individual’s immediate 
context. 
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mechanistic principles of how the brain acquires, consolidates, and abstracts 
knowledge. It will contribute an understanding of how representations of 
knowledge form in the learner, how learners interact to develop a shared under-
standing in a classroom context, the role of attention and motivation in this pro-
cess, how other factors may affect the learning properties of the brain (such as 
the role of sleep in consolidating memories, or of aerobic fitness in modulating 
brain plasticity), and the factors that may alter changes in brain plasticity with 
age, in order to optimize learning across the lifespan. Cognitive modeling will 
also contribute an understanding of cognitive mechanisms in the teacher: how 
the teacher represents the current state of the learner, how the teacher uses this 
knowledge to present information relevant to the task domain to the advance 
learner’s knowledge, how the teacher generates feedback that is  meaningful to 
the learner given the current state of knowledge, and how the teacher’s emo-
tional and motivational states modulate these processes. Finally, cognitive mod-
eling will contribute an understanding of how each of these processes can vary 
across individuals, from the least to most gifted. 

 Cognitive modeling is a computational approach in neuroscience to under-
standing the process of learning and development. We now consider computa-
tional approaches in education that use our, albeit partial, understanding of the 
process of learning to develop a computational model of teaching. Here, there are 
two distinct approaches: intelligent tutoring systems and adaptive microworlds. 

    Computers as Teaching Systems 

  Educational models of teaching and learning 

 From the educational point of view, any teaching–learning environment includes 
a set of properties that must be present to make it possible for students to learn. 
The terminology is different, but the properties found in the educational litera-
ture all have their counterparts in the neuroscience account of learning devel-
oped above. These are referenced in parentheses in the following educational 
account, where a teaching–learning environment must specify a  learning out-
come  ( requisite/target behavior ), a  method of assessment  of achievement of the 
learning outcome ( generalization set , i.e., the test that learning has occurred), 
and a  set of task activities  ( training set ) the learner is to work through in order to 
achieve the outcome, where each activity consists of  learner actions  ( output 
responses ) to achieve a  goal  ( target problem ), and  meaningful feedback  ( feedback ) 
on the actions in relation to the goal. The teaching–learning environment may 
also give learners access to  peer learners  ( agents ). These properties are common 
both to conventional human/physical learning environments and to digital 
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teaching–learning environments that attempt to emulate the human teacher. 
The digital version is a computer program in which the role of the teacher, the 
task activities, the goal, and the feedback all take place through the learner inter-
acting with a either an “intelligent teaching system” or an “adaptive microworld”. 

 The remaining correspondence is between the  computational system  that 
models learning in a cognitive system, and the  teacher’s model of learning , which 
is meant to correspond to the way their learners learn. In a digital teaching–
learning environment in education, the model of learning draws on one or more 
theories of learning, such as constructivism, social constructivism, construc-
tionism, and conceptual, experiential, collaborative learning (Laurillard,    2012 ), 
none of which have clear equivalents in the computational system models of 
learning above: concept learning, decision tree learning, artificial neural net-
works, Bayesian (probabilistic) learning, instance-based learning, genetic 
 algorithms, and reinforcement learning. This is probably because the computa-
tional system models are relevant for learning the  elements of knowledge or 
skills (such as the link between the verb stem and the past tense), whereas the 
educational theories operate at a different level of description of the curriculum 
(such as “the different forms of verb conjugation”, “the laws of motion”, or “the 
causes of the first world war”). However, the educational models of learning are 
much less well specified in terms of clearly agreed parameters and mechanisms, 
and lack synergy (Bransford et al.,    2006 ). 

 One advantage of trying to construct a digital teaching–learning environment 
is that, just as with the cognitive modeling discussed above, the process demands 
 specificity about exactly what the model of learning consists in. By combining the 
expectations on teacher and learner of all the current educational models of 
learning, it is possible to derive an explicit model, the “conversational framework,” 
for describing the teaching–learning process in education (Frederickson, Reed, & 
Clifford,    2005 ; Laurillard,    2002 ). This model defines the process as a continual 
 iteration between teacher and learner, between learner and peer, and between 
each participant’s concepts and actions. Figure   3.5   illustrates the relationships bet-
ween teacher, learner, and peer, and with the practice environment, real or virtual. 

      The iterations between the teacher’s conceptual knowledge (TC) and the learn-
er’s conceptual knowledge (LC) are mediated by forms of representation such as 
language, symbols, diagrams, animations, and so on, through reading, listening, 
watching, debating, discussing, and so on, at the conceptual level. At the practice 
level, the teacher generates a modeling environment that emulates the world 
(TME), such as exercises, labs, fieldwork, and so on, in which the learner can use 
his or her practice repertoire (LP), in the form of goal-oriented actions, feedback, 
and revised actions, at the action level. Peer learning is represented in terms of 
discussions with peers about their  concepts (PC) and exchanges of their practice 
outputs (PP). The within-participant iterations represent the generation of 
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 Figure 3.5     The conversational framework for individual and peer learning. 

actions in the light of their current concepts and the modulation of their concepts 
in the light of feedback on actions. This includes the teacher generating a practice 
environment in the light of learners’ discussions and questions, and modulating 
his or her own discourse in the light of learners’ actions. The framework attempts 
to capture the dynamics of teacher–learner–peer interactions both within and 
beyond the classroom. The theories of learning currently used in education can 
each be mapped onto all or part of the framework. 

 In terms of the two types of model discussed above, the iterative nature of this 
model and the adaptive nature of the processes of generating actions and modu-
lating concepts make it closest to the learning mechanism for incrementally 
improving behavior that is based on  subsymbolic  models. In the conversational 
framework, the knowledge representations that constitute the learner’s concepts 
and actions are similarly opaque – they can only be detected in terms of what the 
learner produces as conceptual representations in their interactions with the 
teacher and peers, or the actions performed at the practice level. 

 In the next sections we look at the two main approaches to computational 
 modeling in education: intelligent tutoring systems and adaptive microworlds. 

   Computational modeling of teaching and learning: 
intelligent tutoring systems 

 Intelligent tutoring systems (ITSs) use a symbolic model, and derive from the-
ories of human information processing. A computational model of cognitive 
processing, such as ACT-R, enables an intelligent tutoring system to make 
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 inferences about what and how students are learning, as it monitors their out-
puts on a set of activities provided by the system (Sawyer,    2006 ). 

 The intelligent tutoring system has three components that are critical for 
aligning the student and teacher.

  The  learning model  is the network of declarative chunks and production rules 
that generate responses to the problem set, i.e., the equivalent of the  computa-
tional system  in neuroscience, and the  teacher’s model of learning  in education. 

 The  diagnosis  of the student’s current needs is carried out by the system moni-
toring the student’s behavior ( learner actions  or  output responses ) and com-
paring it with the behavior predicted by the model, in order to deduce which 
declarative knowledge chunks and production rules are being used. For 
example, if a student is making mistakes, it deduces the erroneous knowledge 
the student is using that would generate such mistakes. 

 The  teacher feedback  deals with the discrepancies diagnosed between the actual 
and predicted behavior, and is provided by the system in the form of help, 
scaffolding, and “dynamic instruction to repair the holes in their knowledge” 
(Anderson & Schunn,    2000 , p. 19).  

This account does not make any explicit reference to the other components of 
the cognitive model, although they are present in an intelligent tutoring system: 
the  task activities  or  training set  take(s) the form of the actions the student has to 
take to achieve the  goals  set by the system. So there is a good correspondence 
between the cognitive model and the computational modeling offered by the 
intelligent tutoring system. 

 Research on the intelligent tutoring system approach has some features in 
common with cognitive modeling, therefore, but was overtaken in the 1990s by 
the explosion of alternative forms of computer-based learning activities such as 
web resources, multimedia, user-generated content methods, and online com-
munications technologies (Laurillard,    2010 ), and it has not progressed to having 
any major mainstream impact. 

   Computational modeling: adaptive microworlds 

 By contrast, an adaptive microworld has no explicit model of learning, being closer 
to the subsymbolic model of learning, and is built on Papert’s ideal of “learning 
without being taught” (diSessa,    2001 ; Papert,    1980 ). A microworld is an interactive 
computational model of an aspect of the world, with its own constraints and assump-
tions, in which learners can experience the relevant concepts by using the program 
“to engage tasks of value to them, and in doing so … come to understand powerful 
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underlying principles” (diSessa,    2001 ). It is adaptive (i) when it responds to the 
learner by showing the result of their actions in that world, and (ii) when it is designed 
to adjust the difficulty of the task in the light of the learner’s current performance. 

 The microworld approach has fared better, and the fundamental idea of “con-
structionism” as a model of how learning can succeed is still current. Pioneered 
by Seymour Papert at MIT, and influenced by Piagetian psychology, “construc-
tionism” embodies the theory that we learn complex concepts and ideas best by 
constructing representations that use them (Papert,    1980 ; Papert & Harel,    1991 ). 
The idea was applied to curriculum topics in science, but had most impact in 
school maths in the form of “Logo” for learning geometry, in many different 
countries (Hoyles & Noss,    2003 ). The fundamental concept of learning through 
construction is applicable across a wide range of discipline areas, at all levels of 
learning. The concept has now been implemented as “NetLogo”, a modeling tool 
that enables learners to set up and investigate models of the behavior of systems 
such as population growth, electrical circuits, and climate change, wherever a 
computational model is possible (Gilbert & Troitzsch,    2005 ). 

   The computational modeling of pedagogy 

 To provide a teaching–learning environment, a computer program must include 
all the properties defined above, which a simple modeling environment such as 
Logo or NetLogo does not. A simple modeling environment is adaptive to stu-
dents’ actions, but not to their level of performance. Here, it is the teacher who 
monitors and sets up the task activities. By contrast, an  adaptive microworld  
combines the task model with rules for monitoring student performance and 
adapts the difficulty of the next task according to the learner’s needs. Figure   3.6   
shows how the two contrasting computational environments for teaching and 
learning can be mapped onto the framework. 

      In Figure   3.6  (a) the ITS uses the model of the teacher’s modeling environment 
(TME) to generate the task goal (1, 2); the learner uses his or her concept knowledge 
to generate an action to achieve the goal (3, 4); the ITS monitors the learner’s 
action and modulates the extrinsic feedback or guidance (5, 6), allowing the 
learner to adapt his or her concept knowledge to generate a revised action (7, 8). 

 In Figure   3.6  (b) the teacher’s modeling environment is a microworld (TME) 
that sets the task goal (1); the learner uses his or her concept knowledge to gen-
erate an action to achieve the goal (2, 3); the microworld models and shows the 
result of the action (4); the learner uses the feedback to modulate his or her con-
cept knowledge (5) and generate a revised action (6, 7); an adaptive microworld 
monitors the learner’s actions and modulates the selection of the teacher’s 
 concept (8) to generate a more, or less, challenging task goal (9, 10). 
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 The point of adapting to the learner’s performance is to make the learning 
situation challenging, to keep the learners in the “zone of proximal development” 
(Vygotsky,    1978 ), where inevitably they will make errors. We know that the 
response to errors is critical in the neural basis of learning. The brain mecha-
nisms try to reduce the difference between the organism’s response and the 
correct or optimal outcome through  prediction error learning  (Dayan & Abbott, 
   2001 ). Similarly, the “constructionist” pedagogy relies on the learner being able 
to interpret the nature of the error (i.e., that the feedback is meaningful to him 
or her, and then constructing the correct response, thereby recruiting the “pred-
ication error learning” mechanisms to dealing with the task set). For this to be 
possible, the task set must be within the current repertoire, so it is important for 
the program to monitor the  learner actions  or  output responses , provide  mean-
ingful feedback  so he or she can change the action or response until it matches 

 Figure 3.6         (a) An intelligent tutoring system, and (b) an adaptive microworld mapped 
to the conversational framework. 
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the  goal , and if still having difficulty, adapt the  goal  or  target problem  by  changing 
the  task activity  or  training set . 

   An example of an adaptive microworld 

 As we have seen, neuroscience can help us understand the process of learning 
by providing cognitive models such as  prediction error learning , or learning algo-
rithms based on machine learning systems, which can inform the approach a 
human teacher or a tutoring program might take and are compatible with 
educational models such as constructionism. It can also help with identifying the 
type of knowledge that must be targeted. An example of this is the identification of 
“dyscalculia” as a particular type of neural deficit, sometimes referred to as a “lack 
of number sense” (see Chapter 8). Children and adults who are dyscalculic need to 
spend time making sense of how numbers work, and teachers of special needs 
(SEN) classes have developed materials and techniques to help tackle this specific 
deficit (Butterworth & Yeo,    2004 ). Working with, for example, rods of different 
lengths to represent numbers (such as Cuisenaire rods), learners work on tasks 
such as constructing the relations between sets (e.g., finding any two rods that make 
up the length 10, or finding which two identical rods make 10). The same approach 
has now been implemented as a digital environment by modeling the teacher in the 
form of an adaptive microworld, which embodies the assumption that the learner 
is using the cognitive mechanism of  prediction error learning . One such example is 
a program for learning the number bonds of ten. Its properties are as follows:

   learning outcome  – able to compute, e.g., 3 + ? = 10; 
  method of assessment  – tasks such as 3 + ? = 10, etc. 
  set of task activities  – find the correct number bond for 10 for a given number 

(rods fall within a 10 unit wide column; the sequence of tasks progresses from 
rods with colour + length, to length only, colour + length + digit, length + digit, 
digit only; rods fall more slowly if performance is poor); 

  learner actions  – select a rod to fit the column from the pile of 10 rods; 
  goal  – select the rod that fits; 
  meaningful feedback  – rods overlap or show a gap or wriggle into place.  

This program provides no peer interaction, and is designed for the individual 
learner working without a teacher (see  www.number-sense.co.uk   for other exam-
ples). The teacher’s model of learning embodied in the program is the idea of 
“constructionism”, that by trying to construct a pairing that fits, and by seeing the 
result of this action, and then attempting to improve it, the learner will begin to 
make sense of the relationship between the cardinalities of the numbers 0 to 10 in 
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terms of their representation as lengths, and eventually in terms of their represen-
tation as digits (see Figure    3.7   for a representation of the interface 2  ). Like the 
human teacher, the program adapts the next task item to the pace and accuracy of 
the response, and the next task set to the learner’s ability, proposing that the 
learner repeat the same task if he or she was very slow or very inaccurate (although 
the learner can override this). Tests with learners in SEN classes (the  method of 
assessment , or  generalization set ) in primary and secondary school (ages 8–13) 
show that, for example, (i) their performance improves over the short term (two 
weeks), and (ii) the number of tasks completed is significantly more than in an 
SEN class of three learners: 4–11 trials per minute were completed by individual 
learners, while only 1.4 trials per minute were completed on average during 
 ten-minute observations of the classes (Butterworth, Varma, & Laurillard,    2011 ). 

      Like the cognitive modeling example above, and the intelligent tutoring system 
in this section, therefore, this approach also addresses the essential properties for 
a teaching–learning system. The principal differences between the computational 
modeling in neuroscience and in education are that in the former the learning 
process is being modelled by the system, the output of which is to be the same as 
that of the human learner, whereas in the latter there is only an assumed model of 
how the human learner is learning, and it is the human teacher whose behavior is 
modelled by the systems. To examine this in more detail we consider in the next 
section how the concept of “feedback” is used in the two types of system. 

   Contrasting perspectives on “feedback” 

 Computational modeling in neuroscience and education sometimes uses similar 
terminology, but the concepts behind this terminology do not always directly 
line up. The notion of feedback offers an instructive example. Feedback is crucial 
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As a rod falls, the learner must select
the appropriate rod to make a length of 10.
The feedback shows an overlap, gap, or fit,
and if incorrect, the same rod falls again, so
the learner can improve their response in
the light of the feedback.
Task difficulty varies according to whether
the objects display length, colour, digit, in
different combinations, or, at the highest
level, only digits.
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 Figure 3.7     Learning the number bonds of 10. 

2      Now available in the App Store as ‘Number Bonds by Thinkout’.  
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in  education, to improve performance on a given task and thereby build an 
understanding of the topic. Based on the student’s current performance on a set 
of activities, the teacher offers a form of feedback, of which there are two types 
– “extrinsic”, where the teacher interprets what the student needs to be told in 
order to improve their performance, and “intrinsic”, where the environment 
provides information about the result of their action in relation to their intended 
goal. In both cases, feedback must be meaningful to the learners if they are to 
make use of it. The distinction is important because classroom research strongly 
suggests that intrinsic motivation and reward are more effective than extrinsic 
(Deci, Koestner, & Ryan,    2001 ). 

 Intelligent tutoring systems endeavour to capture and automate the role of 
the teacher in providing the appropriate  extrinsic  feedback, given the actions 
of the learner in the task environment of the system. For example, in a system 
tutoring multiplication, the student attempts a set of problems. Based on the 
characteristics of the errors displayed, the tutoring system will infer the stu-
dent’s current (erroneous) understanding of the multiplication procedure and 
provide direct  extrinsic  feedback to repair the gaps in knowledge and rules, 
and then set further problems to enable the student to improve his or her 
performance. 

 Adaptive microworlds create a practice environment that provides  intrinsic  
feedback on the learner’s actions on a task, based on its model of the world, 
although by modeling a specific aspect of the real world it focuses the learner’s 
attention on the concepts and skills relevant to the learning outcome. It then 
selects further tasks, according to the learner ’ s level, to enable him or her to 
improve in performance. 

 Cognitive modeling considers how feedback operates inside learning 
mechanisms. Models are generally addressed to mechanisms for acquiring 
particular behaviors (such as learning to read, or as we saw above learning 
aspects of English grammar or aspects of number). Acquisition occurs 
through exposure to the problem domain. For artificial neural networks, 
feedback is usually construed as falling into three different classes. In  self-
organizing learning  mechanisms, the goal is for the system to develop cate-
gories that capture the key dimension of the problem domain, without 
necessarily generating overt behavior. Self-organizing systems require no 
external feedback, but instead attempt to optimize some property of their 
internal knowledge representations as they are exposed to more and more 
examples of the problem domain. One such property would be how concise 
or parsimonious the representations are. 

 In  supervised learning , very detailed feedback is given to the learning mecha-
nism to improve its performance. For a given input (i.e., example from the 
problem domain), the mechanism must learn to output a given response (i.e., the 
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right answer, or a step toward the right answer to be fed into another mechanism 
in the wider cognitive system). Learning occurs in the following way. For the 
given input, the mechanism outputs its current “best guess” of the appropriate 
response. This is compared with the actual desired response. The disparity bet-
ween the two is used as an  error signal  to adjust the connection strengths of the 
network in such a way that the next time the network encounters this problem 
its output will be closer to the desired answer. Through repeated exposure to 
examples, along with detailed feedback, the network gradually acquires the 
required knowledge. From the point of view of the learning mechanism, the 
source of the desired response is simply viewed as external to the mechanism – it 
might originate either from another part of the cognitive system, or as informa-
tional feedback from the environment, or from a teacher. As a type of learning 
algorithm, therefore, supervised learning would be neutral as to whether the 
feedback was intrinsic or extrinsic. 

 The third type is called  reinforcement learning , and falls in between self- 
organized learning (no feedback) and supervised learning (detailed feedback). 
In reinforcement learning, the mechanism offers its best guess as to the required 
response, but the feedback it receives is much more vague. It is similar to a game 
of locating a hidden object, where one is told “warmer, warmer, cooler, cooler” 
to encourage looking in one place but discourage looking in other places. This 
type of learning mechanism is less powerful for learning detailed knowledge. 
However, researchers have used this type of mechanism to build models of the 
development of decision making and behavioral control, based on whether the 
child finds the outcome of each decision to be good or bad; and models of how 
decision-making abilities can differ in disorders such as attention deficit hyper-
activity disorder (see, e.g., Williams & Dayan,    2005 ). Because this type of 
learning operates by attempting to minimize the disparity between the expected 
reward of an action (e.g., whether you will be told “warmer” or “cooler” in the 
find-a-hidden-object game) and the actual reward, it is sometimes called  predic-
tion error learning . 

 The example of feedback shows that all forms of computational modeling dis-
cussed here require very detailed specification of the information provided to the 
learner to improve performance on a task. In the case of intelligent tutoring, 
providing feedback requires a model of the learner that enables the system to 
match the output to the presumed input, and thereby direct the feedback to the 
behavior that produced the erroneous output. In the case of adaptive microworlds 
the model of the task interaction must provide appropriate informational feedback 
on the action that enables the learner to interpret how to improve the action. In the 
case of cognitive models, feedback considers ways in which information is directed 
to specific mechanisms to alter their knowledge and thereby incrementally 
improve subsequent behavior. 
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    Conclusion 

 This chapter has reviewed recent work on the use of computational models in 
educational neuroscience, in the related methods of cognitive modeling and 
digital teaching tools. We highlighted the strength of the modeling method, 
in making explicit theories of learning and teaching. We demonstrated that 
there are several points of similarity between the approaches of cognitive 
modeling and digital teaching tools, even though they have different goals 
and different theoretical origins. Cognitive modeling aims to understand the 
learning process in the brain; within the teaching tools, intelligent tutoring 
systems aim to model the learner’s knowledge as a version of the domain 
knowledge in order to  generate appropriate remedial tutoring; adaptive 
microworlds aim to use our understanding of the learning process in the 
brain to model an environment in which the learner can use this process to 
learn formal concepts and skills. The theoretical origins of the contrasting 
approaches draw primarily on neuroscience, information processing, and 
constructionism, respectively. 

 We have shown that the two approaches identify a common set of properties 
that a learning environment must have. This is encouraging for the future of the 
interdisciplinary field of educational neuroscience. Despite their very different 
goals and theoretical origins, the computational models have identified 
something like the essence of what it takes to learn, and formalized it as the set 
of conditions that make learning possible. From this analysis we can begin to 
envisage the transfer of a learning model, or task activity, or feedback type from 
one discipline to another; or the transfer of a finding from one to being tested in 
another; as well as the contesting of terminology and precise definitions that 
could help to advance the disciplines of education and neuroscience separately 
while beginning to bind them together. In short, we are moving towards the 
potential of integrating educational, neuroscience, and psychological approaches 
in our developing understanding of learning. 

 We conclude that the two types of modeling provide the basis for the 
 constructive interdisciplinary dialogue that can now take place between neuro-
science-informed cognitive models and education-informed teaching systems. 
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