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Abstract	

From	the	genetic	side,	giftedness	in	cognitive	development	is	the	result	of	

contribution	of	many	common	genetic	variants	of	small	effect	size,	so	called	

polygenicity	(Spain	et	al.,	2015).	From	the	environmental	side,	educationalists	

have	argued	for	the	importance	of	the	environment	for	sustaining	early	potential	

in	children,	showing	that	bright	poor	children	are	held	back	in	their	subsequent	

development	(Feinstein,	2003a).	Such	correlation	data	need	to	be	complemented	

by	mechanistic	models	showing	how	gifted	development	results	from	the	

respective	genetic	and	environmental	influences.	A	population-level	

neurocomputational	model	of	cognitive	development	is	presented,	based	on	

artificial	neural	network	architectures.	Variability	was	produced	by	many	small	

differences	in	neurocomputational	parameters,	instantiating	a	polygenic	model,	

and	by	variations	in	the	level	of	stimulation	from	the	environment.	The	

simulations	captured	several	key	empirical	phenomena,	including	the	non-

linearity	of	developmental	trajectories,	asymmetries	in	the	characteristics	of	the	

upper	and	lower	tails	of	the	population	distribution,	and	the	potential	of	poor	

environments	to	hold	back	bright	children.	At	a	computational	level,	‘gifted’	

networks	typically	had	higher	capacity,	higher	plasticity,	a	better	processing	

signal,	a	lower	impact	of	regressive	events,	and	a	richer	environment,	but	

individual	instances	presented	heterogeneous	contributions	of	these	factors.	

	

Keywords:	Giftedness;	computational	modelling;	artificial	neural	networks;	

cognitive	development;	socio-economic	status;	population	modelling	
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Highlights	

• Presents	an	artificial	neural	network	of	cognitive	development	in	a	

simulated	population	of	children,	including	both	genetic	and	

environmental	contributions	to	variations	in	ability	

• Captures	gifted	development	as	a	polygenic	effect	–	the	cumulative	effect	

of	many	small	neurocomputational	advantages	

• Considers	environmental	effects	as	variations	in	the	level	of	cognitive	

stimulation	

• Demonstrates	how	although	causes	of	variation	in	ability	are	quantitative	

and	continuous,	the	bottom	(delayed)	and	top	(gifted)	tails	of	the	

population	behave	differently	–	there	are	many	ways	to	fail	but	few	to	

succeed	

• Captures	the	importance	of	a	rich	environment	to	sustain	early	gifted	

development,	observed	in	longitudinal	cognitive	data	(Feinstein,	2003)	

• Shows	how	cases	of	gifted	developmental	may	be	highly	heterogeneous	at	

a	neurocomputational	level	
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The	causes	of	giftedness	in	cognitive	or	physical	abilities	are	complex,	involving	

both	genetic	and	environmental	contributions	(Sternberg	&	Davidson,	2005).	

Humans	with	exceptional	abilities	may	have	innate	potential,	but	skills	must	be	

developed	over	time,	and	an	individual	requires	a	combination	of	ambition,	

opportunity	and	a	willingness	to	work	in	order	to	realise	the	potential;	in	this	

sense,	Wai	(2014)	described	experts	as	born	then	made.	Moreover,	genetic	and	

environmental	factors	may	be	correlated.	For	example,	parents	may	identify	an	

indication	of	talent	in	their	children	and	encourage	the	talent	to	flourish	through	

providing	opportunities	and	resources	(Ericsson,	Nandagopal	&	Roring,	2005).	

Talented	children	may	themselves	seek	out	the	environments	and	activities	that	

will	foster	development	of	their	abilities	(Ericsson,	2014).	

Recent	work	in	behavioural	genetics	has	focused	on	genetic	contributions	

to	giftedness.	Evidence	from	twin	studies	in	several	countries	suggested	a	

genetic	contribution	to	cognitive	performance	in	the	high	range	(Haworth	et	al.,	

2009).	In	these	data,	genetic	influences	explained	50%	of	the	variance	in	those	

performing	in	the	top	15%	of	population	distributions.	Molecular	genetics	using	

genome	wide	association	analyses	(GWAS)	suggest	that	the	causes	of	low	

performance	in	the	bottom	tail	of	the	distribution	and	high	performance	in	the	

upper	tail	may	be	different,	at	least	for	intelligence.	Spain	et	al.	(2015)	found	that	

while	the	bottom	tail	was	associated	with	increased	incidence	of	genetic	

mutations	(rare	alleles),	the	upper	tail	had,	if	anything,	a	reduced	frequency	of	

rare	alleles.	The	wider	picture	is	that	genetic	contributions	to	intelligence	stem	

from	many	common	genetic	variations	each	of	small	effect,	known	as	the	

‘polygenic’	model	(Plomin	&	Deary,	2015);	rare	functional	variants	are	more	

often	detrimental	than	beneficial	to	intelligence.	
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Lykken	(2006;	see	also	Simonton,	1999,	2005)	argued	that	the	genetic	

contributions	to	giftedness	were	multiplicative,	such	that	if	any	of	a	set	of	genetic	

variants	were	absent,	this	would	negate	a	gifted	outcome	–	the	so-called	

emergenic	model.	However,	twin	studies	have	suggested	the	genetic	

contributions	to	giftedness	for	intelligence	appear	to	be	additive	in	effect	rather	

than	dominant	(that	is,	identical	twins	are	not	more	than	twice	as	similar	as	

fraternal	twins).	Plomin	and	Deary	(2015)	concluded	that	twin	studies	of	

intelligence	currently	indicate	that	all	genetic	influence	is	additive	for	high	

intelligence	as	well	as	the	entire	distribution	of	intelligence	(see	also	Plomin	&	

Haworth,	2009).	In	sum,	then,	genetic	influence	on	cognitive	ability	appears	to	

involve	many	genes	each	contributing	small	effects;	these	contributions	are	

additive;	and	for	high	ability,	these	genes	are	common	variants.	The	innately	

gifted	individual	has	been	lucky	enough	to	inherit	cognitively	beneficial	versions	

of	many	genes.	

Behaviour	genetics	generates	these	insights	from	correlational	analyses.	

However,	genetic	effects	must	ultimately	unpack	in	causal	properties	of	the	brain	

and	body.	With	respect	to	the	former,	such	properties	may	be	construed	in	terms	

of	neural	mechanisms	and	neurocomputational	properties.	In	these	terms,	gifted	

performance	is	the	result	of	many	small	advantageous	aspects	of	

neurocomputation,	potentially	across	multiple	systems,	and	their	contribution	to	

the	development	and	maintenance	of	cognitive	and	physical	abilities.	

A	separate	literature	in	educational	achievement	has	focused	on	

environmental	influences	on	the	development	of	children	with	different	levels	of	

ability.	Taking	a	long-term	perspective,	this	literature	highlights	the	role	of	socio-

economic	status	(SES)	in	either	fostering	or	holding	back	early	potential.	In	a	
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seminal	paper,	Feinstein	(2003a)	presented	an	analysis	of	longitudinal	data,	

grouping	children	by	cognitive	ability	at	22	months,	and	then	following	these	

children	through	to	10	years	of	age.	Children	from	low	SES	families	(where	SES	

was	defined	by	parental	education	level)	did	not,	on	average,	‘overcome	the	

hurdle	of	lower	initial	attainment,	combined	with	continued	low	input’	

(Feinstein,	2003b,	p.30).	But	notably,	social	inequalities	also	appeared	to	

dominate	the	early	positive	signs	of	academic	ability	for	most	of	those	low	SES	

children	who	did	well	early	on.	The	message	that	policymakers	took	from	these	

data	was	that	bright	children	from	poorer	families	tend	to	fall	back	relative	to	

more	advantaged	peers	who	have	not	performed	as	well	(Feinstein,	2015).		

This	pattern	is	depicted	in	later	Figure	2(a)	reproduced	from	Feinstein	

(2003b).	It	shows	the	population	rank	order	of	children	classified	by	ability	in	

the	top	quartile	and	bottom	quartile	on	cognitive	tests	at	age	22	months,	and	

then	those	groups	split	into	high	SES	(top	24%	of	population)	and	low	SES	

(bottom	13%).	The	top	quartile	ability	/	low	SES	group	shows	a	declining	mean	

rank	across	age,	while	the	bottom	quartile	ability	/	high	SES	group	shows	an	

increasing	mean	rank.	There	has	been	some	subsequent	debate	about	the	shape	

of	this	function:	whether	the	rank	trajectories	of	these	two	groups	cross,	and	

whether	some	of	the	pattern	is	explained	by	regression	to	the	mean	of	initially	

extreme	scores	due	to	measurement	error	in	the	repeated	cognitive	testing	

(Jerrim	&	Vignoles,	2013).	However,	there	is	consensus	on	the	main	finding:	the	

benefits	of	good	early	development	can	be	substantially	eroded	by	social	class	

effects.	

Nevertheless,	as	with	data	from	genetic	studies,	investigations	of	

environmental	influences	on	the	development	of	children	with	high	ability	
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remain	correlational.	They	stand	in	need	of	a	mechanistic	account	that	identifies	

how	the	proxy	of	SES	translates	into	actual	influences	that	shape	the	

development	of	cognitive	abilities	in	children.	

In	this	paper,	we	use	neurocomputational	modelling	of	cognitive	

development	at	the	population	level	to	focus	on	the	mechanistic	basis	of	genetic	

and	environmental	influences	on	high	ability.	Artificial	neural	network	models	

are	employed	to	integrate	data	across	levels	of	description:	from	the	genetic	

level	in	terms	of	influences	on	neurocomputation;	from	the	environmental	level	

in	terms	of	influences	on	the	level	of	stimulation	children	receive	from	the	

environment;	and	from	the	behavioural	level,	in	terms	of	scores	on	cognitive	

tests.	

In	previous	work,	we	have	shown	how	population-level	modelling	of	

cognitive	development	using	artificial	neural	networks	can	provide	a	unified	

framework	to	consider	individual	differences	within	a	developmental	framework	

and	integrate	across	levels	of	description	(Thomas,	Forrester	&	Ronald,	2016).	

We	have	shown	that	observed	SES	effects	on	language	development	can	be	

simulated	by	modulating	the	richness	of	linguistic	experience	received	by	

children	in	families	of	different	SES	levels	(Thomas,	Forrester	&	Ronald,	2013).	

Moreover,	this	model	simulated	the	asymmetric	quality	of	high	and	low	tails	

observed	in	genetic	studies:	SES	predicted	whether	simulated	individuals	would	

fall	in	the	top	10%	of	the	population,	but	not	if	they	would	fall	in	the	bottom	10%.	

This	is	because	there	are	many	ways	to	fail	but	few	to	succeed:	therefore	the	

predictive	power	of	a	single	factor	is	reduced	for	poor	outcomes.	This	novel	

prediction	was	subsequently	supported	in	empirical	data	(Bishop,	2005).	We	

also	investigated	the	causes	of	delayed	development	in	this	model	framework,	
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following	the	trajectories	of	simulated	children	who	exhibited	early	delay	

(Thomas	&	Knowland,	2014).	Of	these	individuals,	two	thirds	subsequently	

resolved	to	the	normal	range	later	in	development.	This	replicates	a	pattern	

observed	in	the	empirical	literature	(e.g.,	Bishop,	2005).	The	model	once	more	

produced	a	novel	prediction:	that	SES	should	predict	variance	in	the	final	

language	ability	level	of	children	whose	early	delay	resolved,	but	not	in	those	

where	the	delay	persisted.	Once	more,	this	prediction	was	confirmed	by	the	

empirical	data	(Bishop,	2005).	

The	framework	has	therefore	demonstrated	its	initial	adequacy	to	

investigate	the	mechanistic	basis	of	individual	differences.	In	the	current	work,	

the	Thomas,	Forrester,	and	Ronald	(2013)	model	is	employed	to	address	the	

developmental	trajectories	of	‘gifted’	simulated	children	falling	in	the	upper	tail	

of	early	performance.	Our	key	questions	are	as	follows:	(1)	For	those	simulated	

individuals	showing	high	early	ability,	what	are	the	neurocomputational	and	

environmental	factors	that	predict	the	long-term	outcome	of	developmental	

trajectories?	(2)	In	a	mechanistic	model	of	experience-dependent	development,	

where	all	sources	of	variation	are	specified	and	there	is	no	measurement	error,	

can	the	Feinstein	graph	be	replicated,	with	the	population	rank	order	of	gifted	

individuals	from	lower	SES	backgrounds	subsequently	declining	across	

development?	(3)	If	such	a	decline	is	observed,	must	the	computational	causes	of	

the	changes	in	rank	be	entirely	environmental,	as	proposed?	(4)	If	changes	in	

population	rank	are	not	entirely	environmental,	can	the	risk	of	subsequent	

decline	be	predicted	from	behavioural	measures	taken	when	early	giftedness	is	

first	recognised?	
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Computational	Modelling	

Simulation	details	

Base	model	

The	base	model	was	drawn	from	the	field	of	language	development,	and	

specifically	the	acquisition	of	the	English	past	tense	within	inflectional	

morphology.	The	model	is	used	here	to	stand	for	more	general	models	of	

cognitive	development	utilised	in	cognitive	modelling	(see	e.g.,	Mareschal	&	

Thomas,	2007).	The	model	employed	an	artificial	neural	network	architecture.		

A	3-layer,	backpropagation	network	was	used	to	learn	to	output	the	past-tense	

form	of	a	verb	from	an	input	vector	that	combined	a	phonological	representation	

of	the	verb	stem	and	lexical-semantic	information	(Joanisse	&	Seidenberg,	1999).	

The	architecture	is	shown	in	Figure	1.	

The	training	set	was	the	“phone”	vocabulary	from	Plunkett	and	

Marchman	(1991,	p.	70).	This	comprised	an	artificial	language	set	constructed	to	

reflect	many	of	the	important	structural	features	of	English	past-tense	formation.	

There	were	500	monosyllabic	verbs,	constructed	using	consonant-vowel	

templates	and	the	phoneme	set	of	English.	Phonemes	were	represented	over	19	

binary	articulatory	features,	a	distributed	encoding	based	on	standard	linguistic	

categorisations	(Fromkin	&	Rodman,	1988).	Separate	banks	of	units	were	used	

to	represent	the	initial,	middle,	and	final	phonemes	of	each	monosyllable.	The	

output	layer	incorporated	an	additional	5	features	to	represent	the	affix	for	

regular	verbs.	The	input	layer	included	500	units	to	encode	the	lexical	status	of	

each	verb	in	the	training	set	using	a	localist	encoding	scheme	(Joanisse	&	

Seidenberg,	1999;	Thomas	&	Karmiloff-Smith,	2003).	Networks	thus	had	

3x19+500=557	input	units	and	3x19+5=62	output	units.	
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There	were	four	types	of	verbs	in	the	training	set:	(1)	regular	verbs	that	

formed	their	past	tense	by	adding	one	of	the	three	allomorphs	of	the	+ed	rule,	

conditioned	by	the	final	phoneme	of	the	verb	stem	(e.g.,	tame-tamed,	wrap-

wrapped,	chat-chatted);	(2)	irregular	verbs	whose	past-tense	form	was	identical	

to	the	verb	stem	(e.g.,	hit-hit);	(3)	irregular	verbs	that	formed	their	past	tenses	

by	changing	an	internal	vowel	(e.g.,	hide-hid);	(4)	irregular	verbs	whose	past-

tense	form	bore	no	relation	to	its	verb	stem	(e.g.,	go-went).	There	were	410	

regular	verbs,	and	20,	68,	and	2,	respectively,	of	each	irregular	verb	type.	A	

separate	set	of	novel	verbs	was	constructed	to	evaluate	the	generalisation	

performance	of	the	network.	These	verbs	could	differ	depending	on	their	

similarity	to	items	in	the	training	set.	Generalisation	in	this	case	was	assessed	via	

410	novel	verbs	each	of	which	shared	two	phonemes	with	one	of	the	regular	

verbs	in	the	training	set,	and	was	evaluated	based	on	the	proportion	of	these	

novel	verbs	that	were	assigned	the	correct	allomorph	of	the	regular	past-tense	

rule.	
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Figure	1.	Schematic	of	the	population	simulations	[reproduced	with	permission	

from	Thomas,	Forrester	&	Ronald,	2013]	

  

	

	

	

	

	

	

	

	

	

	

	

Encoding	extrinsic	variation		

Each	network	simulated	a	child	raised	in	a	given	family,	and	families	were	

assumed	to	vary	in	the	richness	of	the	language	used.	The	language	input	was	

assumed	to	vary	to	some	extent	according	to	SES	(Hart	&	Risley,	1995).	A	

training	set	was	created	for	the	past-tense	information	available	in	each	family	

environment.	SES	was	implemented	through	generating	a	family	quotient	for	

each	simulated	child.	The	family	quotient	was	a	number	between	0	and	100%.	

This	value	was	used	as	a	probability	determining	whether	each	verb	in	the	full	

training	set	would	be	included	in	the	family’s	vocabulary.	The	family	training	set	

was	then	fixed	throughout	development.	Performance	was	always	assessed	
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against	the	full	training	set	(analogous	to	a	standardised	test	of	past-tense	

formation	applied	to	all	children).	The	family	quotient	manipulation	

corresponded	to	a	reduction	in	type	frequency	for	both	regular	and	irregular	

verbs.	Based	on	the	findings	of	Thomas,	Forrester,	and	Ronald	(2013)	on	the	

appropriate	range	of	intrinsic	versus	extrinsic	variation	to	capture	data	on	past	

tense	acquisition,	family	quotients	were	sampled	from	a	uniform	distribution	

from	60%	to	100%,	producing	learning	environments	of	reasonably	high	quality.	

This	corresponds	to	the	assumption	that	there	is	a	minimum	amount	of	linguistic	

information	typically	available	to	a	child.	

	

Encoding	intrinsic	variation	

Artificial	neural	networks	contain	a	range	of	parameters	that	increase	or	

decrease	their	ability	to	learn	a	given	training	set.	Parameters	such	as	learning	

rate,	momentum,	and	number	of	hidden	units	feature	in	most	published	

simulations.	In	models	of	normal/average	development,	parameters	are	

optimised	to	achieve	best	learning	(usually	in	the	presence	of	the	full	training	

set).	In	the	current	model,	a	number	of	parameters	were	simultaneously	varied	

across	individual	networks,	with	learning	ability	determined	by	their	cumulative	

effect.	Thomas,	Forrester	and	Ronald	(2016)	showed	how	these	parameters	

could	be	encoded	in	an	artificial	genome	under	a	polygenic	coding	scheme,	and	

Thomas	(2016)	showed	how	twin	study	designs	could	be	simulated	by	creating	

networks	whose	artificial	genomes	were	identical	(for	identical	twins)	or	shared	

50%	of	genes	on	average	(for	fraternal	twins).	Importantly,	the	population	

distribution	in	learning	ability	was	simulated	by	the	accumulation	of	many	small	

influences	from	difference	neurocomputational	parameters,	themselves	
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influenced	by	multiple	genes.	Individual	gene-behaviour	correlations	were	

therefore	of	very	small	effect	(Thomas,	Forrester	&	Ronald,	2016).	

Variations	occurred	over	fourteen	neurocomputational	parameters,	

allowing	for	over	2000	billion	unique	individuals.	The	parameters	were	as	

follows:	Network	construction:	Architecture,	number	of	hidden	units,	range	for	

initial	connection	weight	randomisation,	and	sparseness	of	initial	connectivity	

between	layers.	Network	activation:	unit	threshold	function,	processing	noise,	

and	response	accuracy	threshold.	Network	adaptation:	backpropagation	error	

metric	used	in	the	learning	algorithm,	learning	rate,	and	momentum.	As	well	as	

an	overall	learning	rate,	there	were	separate	parameters	modifying	the	learning	

rate	between	the	semantic	input	units	and	the	hidden	units,	and	the	phonological	

input	units	and	the	hidden	units,	potentially	altering	the	relative	balance	of	these	

sources	of	information	during	learning,	and	therefore	allowing	more	lexical	or	

phonological	strategies	to	past-tense	acquisition.	Network	maintenance:	weight	

decay,	pruning	onset,	pruning	probability,	and	pruning	threshold.1	

	

Processing	roles	

These	parameters	can	be	viewed	as	serving	different	types	of	processing	role	

within	the	network,	although	some	parameters	contribute	to	more	than	one	role.	

Some	parameters	alter	the	network’s	learning	capacity,	that	is,	the	complexity	

and	the	amount	of	information	that	can	be	learned.	These	include	the	

architecture,	the	number	of	hidden	units,	and	the	initial	sparseness	of	

connectivity.	Regressive	events	involving	pruning	of	connections	can	also	reduce	

																																																								
1 Detailed specification of the parameters can be found in a technical report available at 

http://www.psyc.bbk.ac.uk/research/DNL/techreport/Thomas_paramtables_TR2011-2.pdf 
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capacity	later	in	development,	implicating	the	pruning	onset,	pruning	probability	

and	pruning	threshold	parameters	in	predicting	learning	trajectories	(see	

Thomas,	Knowland	&	Karmiloff-Smith,	2011).	The	nature	of	the	learning	

algorithm	determines	both	what	can	be	learned	and	also	how	quickly.	The	speed	

of	learning	can	be	thought	of	as	the	network’s	plasticity.	Other	parameters	alter	

plasticity,	including	the	learning	rate	parameter,	the	learning	rates	in	semantic	

and	phonological	connections,	the	momentum,	the	initial	range	of	weight	

variation,	and	the	unit	threshold	function.	The	unit	threshold	function	

determines	how	responsive	a	processing	unit	is	to	variations	in	its	input,	and	

therefore	to	some	extent	determines	the	quality	of	the	signal	propagating	

through	the	network.	Signal	is	also	affected	by	the	level	of	processing	noise,	and	

the	accuracy	required	of	output	units	to	drive	a	behavioural	response.	Combined	

with	the	quality	of	the	learning	environment,	the	mechanisms	affecting	

development	can	be	broadly	assigned	the	following	four	categories:	capacity,	

plasticity,	signal,	and	regressive	events.	Parameters	are	categorised	in	this	way	in	

the	reporting	of	results.	

	

Design	

Development	was	traced	across	a	population	of	1000	simulated	individuals,	

focusing	on	the	rate	of	acquisition	of	regular	English	past-tense	forms.	One	

thousand	sets	of	the	14	computational	parameter	values	were	generated	via	

randomly	created	genomes,	with	gene	alleles	sampled	independently.	

Corresponding	computational	parameter	sets	were	instantiated	as	1000	artificial	

neural	networks.	A	family	quotient	value	was	generated	for	each	network	and	

used	to	create	an	individualised	family	training	set.	Each	network	was	trained	
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for	1000	epochs	on	its	family	training	set.	At	each	epoch,	performance	was	

measured	on	the	full	training	set.	Performance	was	assessed	on	regular	verbs,	

irregular	verbs,	and	on	generalisation	of	the	past-tense	rule	to	novel	forms,	in	

order	to	generate	a	behavioural	‘profile’	for	each	network.	Performance	was	

measured	via	accuracy	levels	(%	correct).	

	

Results	

Stability	of	ability	level	over	development	

One	question	considered	by	Feinstein	(2003a)	was	whether	later	educational	

attainment,	say	at	10	years	of	age,	could	be	predicted	by	early	measures	of	a	

child’s	cognitive	ability,	say	around	the	age	of	2.	Such	prediction	is	compromised	

by	several	factors,	including	measurement	error,	the	need	to	use	different	tasks	

at	different	ages	and,	even	where	a	common	task	is	used,	the	possibility	that	the	

child	will	perform	the	same	task	using	different	cognitive	processes	at	different	

ages.	These	issues	aside,	Feinstein	presented	evidence	of	some	stability	in	

cognitive	test	scores	across	age.	Performance	on	cognitive	tasks	at	22	months	of	

age	correlated	with	those	at	10	years	of	age	at	around	0.2.	At	42	months,	scores	

correlated	with	age-10	performance	at	around	0.3.	At	60	months,	the	10-age	

correlation	was	around	0.4.	

For	the	simulation,	we	assessed	performance	of	the	set	of	networks	

across	development,	at	25,	50,	100,	250,	500	and	1000	epochs	on	regular	verbs,	

where	1000	epochs	was	the	end	of	training.	Regular	verbs	formed	the	largest	

proportion	of	the	training	set.	We	use	250	epochs	notionally	to	correspond	to	

middle	childhood.	Performance	at	the	earliest	stage,	25	epochs,	correlated	with	

the	250-epoch	measure	at	.65.	Performance	at	50	epochs	correlated	with	the	
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250-epoch	measure	at	.80,	and	that	at	100	epochs	at	0.91.	The	correlation	

between	the	early	measure	and	performance	at	the	end	of	training	(notionally,	

adulthood)	was	.52.	

In	the	model,	there	was	no	measurement	error,	and	the	same	task	was	

assessed	across	development.	Correlations	in	the	model	were	therefore	

unsurprisingly	higher	than	the	empirical	data.	As	with	the	empirical	data,	

performance	in	middle	childhood	was	better	predicted	by	earlier	measures	that	

were	closer	in	time.	The	more	the	initial	measure	preceded	middle	childhood,	

the	weaker	the	predictive	power.	In	these	non-linear	artificial	neural	networks,	

therefore,	there	is	some	stability	in	the	relative	performance	of	networks	as	they	

acquire	the	learning	domain.	However,	trajectories	were	non-linear	and	their	

relative	position	also	changed	to	some	extent.	Even	in	the	controlled	framework	

of	the	simulations,	performance	at	the	earliest	time	point	only	explained	27.4%	

of	the	variance	in	the	final	level	of	performance	across	the	population.	

	

The	Feinstein	analysis	

At	the	same	early	point	in	development,	25	epochs,	a	population	rank	order	of	

performance	on	regular	verbs	was	established	as	a	measure	of	each	network’s	

ability,	with	a	rank	of	1000	as	the	best	and	1	as	the	worst.	High	ability	networks	

were	defined	as	having	a	rank	above	650,	and	low	ability	networks	were	defined	

as	having	a	rank	below	350.	The	family	quotient,	an	index	of	the	quality	of	the	

environment,	served	as	the	implementation	of	SES.	It	varied	between	60%	and	

100%.	A	value	of	80%	was	used	to	split	simulated	individuals	into	high	(>80%)	

and	low	(<80%)	SES	groups.	The	combination	of	high	versus	low	ability	at	25	

epochs,	and	high	versus	low	SES,	generated	four	groups.	(Note,	the	rank	cut-off	
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values	of	650	and	350	were	chosen	to	generate	good	numbers	of	networks	in	the	

four	subgroups,	with	all	n>150.	Since	the	training	environment	already	affected	

network	performance	by	epoch	25,	more	extreme	cut-offs	tended	to	produce	few	

networks	in	the	high-ability	/	low-SES	and	low-ability	/	high-SES	groups).	

Per	the	method	of	Feinstein	(2003a),	the	mean	rank	order	for	each	of	the	

four	subgroups	was	calculated	at	25	epochs,	and	then	at	five	subsequent	stages	

in	development,	at	50,	100,	250,	500,	and	1000	epochs	of	training.	Figure	2(b)	

shows	the	results,	alongside	Feinstein’s	original	data	(Feinstein,	2003b).	The	

simulation	results	demonstrate	relative	rank	stability	in	the	high-ability	/	high-

SES	and	low-ability	/	low-SES	groups.	As	with	the	empirical	data,	initially	high-

ability	/	low-SES	networks	subsequently	showed	a	decline	in	mean	rank	order,	

while	those	from	initially	low-ability	/	high-SES	groups	showed	an	increasing	

mean	rank.	Because	measurement	error	was	absent	in	the	simulation,	these	data	

demonstrate	that	the	convergence	of	these	two	groups	in	mean	rank	is	not	solely	

the	result	of	regression	to	the	mean.	While	the	convergence	of	the	two	groups	is	

not	as	steep	as	in	Feinstein’s	data,	the	degree	of	convergence	in	the	empirical	

case	has	been	argued	to	depend	on	the	cut-offs	used	to	define	initial	high	and	low	

ability	groups	(Washbrook	&	Lee,	2015).	In	both	Washbrook	and	Lee’s	empirical	

analysis	and	in	the	simulated	data,	less	extreme	definitions	of	high	and	low	

ability	tended	to	produce	steeper	convergence;	see	Thomas	(2017)	for	a	more	

detailed	analysis	of	this	effect.	Finally,	plots	of	rank	order	can	exaggerate	the	size	

of	the	actual	differences	in	performance	level.	Figure	2(c)	demonstrates	the	

mean	accuracy	level	of	the	four	sub-groups	across	development,	showing	

relatively	subtle	divergences	between	trajectories.	
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In	sum,	the	population	simulation	was	able	to	qualitatively	capture	the	

empirical	pattern	reported	by	Feinstein	(2003a),	whereby	bright	children	from	

poorer	families	tend	to	fall	back	relative	to	their	more	advantaged	peers;	and	it	

did	so	by	implementing	SES	as	a	variation	in	the	richness	of	the	structured	

learning	environment	to	which	children	are	exposed.	

	

Figure	2.	(a)	Average	rank	of	children’s	test	scores	on	cognitive	tasks	at	22,	42,	

60	and	120	months	by	SES	of	parents	and	early	rank	position	(Feinstein,	2003b;	

reproduced	with	permission).	High	/	Low	Q	=	quartile	of	cognitive	ability	

assessed	at	22	months	of	age.	(b)	Simulated	data	for	the	population	

neurocomputational	model,	with	ability	assessed	at	25	epochs	of	training,	and	

population	rank	then	measured	at	50,	100,	250,	500,	and	1000	epochs	of	training.	

(c)	Simulated	developmental	trajectories	of	performance	for	the	four	sub-groups.	
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(b)	
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Predictors	of	individual	trajectories	of	early	gifted	individuals	

In	order	to	track	the	development	of	individuals	with	early	potential,	five	time	

points	were	identified,	based	on	mean	population	accuracy	levels	on	regular	

verbs.	These	were	when	the	population	accuracy	was	20,	30,	40,	50	and	65%,	

occurring	respectively	at	13,	21,	31,	49,	and	127	epochs	of	training.	The	earlier	

time	1	point	gave	the	best	opportunity	to	spot	the	fast	developers,	while	the	time	

5	point	was	chosen	because	after	this	point,	population	mean	plus	1	standard	

deviation	exceeded	100%	accuracy	–	with	ceiling	performance	possible,	the	rest	

of	the	population	can	catch	up.	At	each	of	the	five	time	points,	gifted	individuals	

were	defined	as	those	falling	more	than	1	standard	deviation	(σ)	above	the	

population	mean	(μ).	Figure	3	shows	the	distribution	of	population	performance	

at	each	time	point,	along	with	the	cut-off	(μ	+	1	*	σ) to	define	the	gifted	group.	

	 At	the	first	time	point,	the	group	of	gifted	individuals	corresponded	to	

20.3%	of	the	population,	comprising	44	from	the	lowest	SES	quartile,	35	and	58	

from	the	middle	quartiles,	and	66	from	the	upper	quartile.	The	highest	two	SES	

quartiles	had	the	most	individuals,	and	this	pattern	differed	reliably	from	chance	

(X(3)=11.40,	p=.010).	The	richness	of	the	training	the	environment	was	

therefore	instrumental	in	producing	gifted	performance	even	at	this	early	point	

in	training.	However,	44	(21.7%)	of	early	diagnosed	gifted	came	from	individuals	

exposed	to	the	poorest	environments	(bottom	quartile).	

	 Trajectories	were	followed	to	assess	whether	individuals	initially	

identified	as	gifted	retained	this	status	at	each	measurement	point,	or	whether	

they	returned	to	the	normal	range.	We	refer	to	this	henceforth	at	‘renorming’.	

While	44	of	early	diagnosed	gifted	came	from	individuals	exposed	to	the	poorest	

environments,	all	but	one	of	these	individuals	subsequently	renormed.	The	



	 21	

initial	implication	is	that	without	the	support	of	a	rich	environment,	gifted	

performance	will	not	sustain.	
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Figure	3.	Performance	distribution	on	regular	verbs	at	each	time	point,	along	

with	the	cut-off	for	defining	giftedness.	µ is	the	mean	and	σ is	the	standard	

deviation	at	each	time	point	

		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Time 1 

Time 2 

Time 3 

Time 4 

Time 5 

µ	
σ 

µ	

µ	

µ	

µ	

σ 

σ 

σ 

σ 

(a)	

(b)	

(c)	

(d)	

(e)	



	 23	

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

$!!"#

$# %# &# '# (#

!
"#
$#

%&
'(

$)
"*)

+,
--
-.
"

/012"#$0)3"

-./012#

34567#

Figure	4	depicts	the	proportion	of	the	population	classified	as	gifted	at	

each	time	point.	The	proportion	dropped	over	developmental	time.	Of	those	

initially	classified,	gifted	individuals	renormed	in	63.5%	of	cases.	Sustained	

giftedness	was	observed	in	only	36.5%	of	individuals	(7.4%	of	the	population).	

This	reduction	predominantly	occurred	at	the	final	time	point,	and	was	partly	

due	to	the	top	of	the	normal	range	approached	ceiling	performance	on	the	

regular	verb	measure,	making	it	harder	for	individuals	to	fall	above	the	normal	

range.	It	was	expected	that	at	time	5,	any	early	gifted	individuals	who	had	

renormed	would	nevertheless	remain	toward	the	top	of	the	normal	range.	Of	

those	renorming,	94.4%	(134	individuals)	indeed	remained	in	the	top	500	of	the	

population.	

	

Figure	4.	Proportion	of	simulated	population	exhibiting	giftedness	at	each	time	

point,	where	giftedness	was	defined	as	falling	more	than	1	standard	deviation	

above	the	population	mean	at	that	time	point	(see	Figure	3).	
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Only	in	a	handful	of	cases	was	final	performance	poorer	after	early	strong	

development:	in	4.3%	(6	individuals),	final	performance	was	in	the	bottom	500,	

and	in	1.4%	(2	individuals),	final	performance	was	in	the	bottom	250.	Of	those	

finishing	with	poor	outcomes,	5	out	of	the	8	individuals	demonstrated	

developmental	regression,	where	the	trajectory	showed	an	overt	drop	in	

performance	at	some	point	in	training,	followed	by	recovery.	In	these	cases,	a	

chance	combination	of	risk	factors	led	to	the	connection	pruning	process	causing	

damage	to	established	connectivity	and	therefore	performance	to	decline	

following	strong	early	development.	Elsewhere	we	have	considered	this	process	

as	a	candidate	mechanism	for	developmental	regression	in	autism	(Thomas,	

Knowland	&	Karmiloff-Smith,	2011;	Thomas,	Davis	et	al.,	2016),	and	we	do	not	

consider	these	cases	further	here.	Trajectories	for	the	three	remaining	

individuals	with	strong	early	development	but	low	final	outcome	are	shown	in	

Figure	5(d),	and	the	reasons	for	these	profiles	are	considered	as	case	studies	

below	as	a	demonstration	of	the	causal	heterogeneity	of	gifted	profiles.	

We	saw	in	the	introduction	that	genetic	data	have	pointed	to	a	causal	

asymmetry	between	the	lower	and	upper	tails	of	the	distribution	of	cognitive	

development	(Spain	et	al.,	2015).	Using	the	Thomas,	Forrester	and	Ronald	

(2013)	model,	Thomas	and	Knowland	(2014)	followed	the	trajectories	of	

simulated	individuals	exhibited	early	signs	of	delayed	development	(more	than	1	

standard	deviation	below	the	population	mean	at	time	1).	For	these	individuals,	

the	early	delay	resolved	in	around	two	thirds	of	cases.	For	the	cases	of	resolving	

delay,	approximately	20%	of	cases	led	to	good	eventual	outcomes	(in	the	top	half	

of	the	population).	For	cases	of	giftedness,	however,	very	few	individuals	who	

returned	to	the	normal	range	then	demonstrated	a	low	(bottom	half)	final	rank	
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order	in	the	population	(5.7%,	or	2.1%	excluding	cases	of	overt	regression).	

Although	the	model	produced	a	distribution	of	development	by	continuous	

quantitative	variations	across	a	range	of	parameters,	it	demonstrated	

asymmetries	in	the	respective	tails	of	the	distributions,	where	early	delay	was	

sometimes	associated	with	good	final	outcome,	but	early	advantage	was	not	

typically	associated	with	poor	final	outcome.	Wedded	with	the	observation	that,	

in	this	model,	environmental	quality	predicts	falling	in	the	top	tail	but	not	the	

bottom	tail	(Thomas,	Forrester	&	Ronald,	2013),	the	model	demonstrates	

asymmetric	properties	in	the	development	at	the	respective	extremes.	

Figure	5	depicts	sample	trajectories	from	each	of	four	groups:	non-gifted,	

sustained	gifted,	renorming	gifted	with	high	final	performance	(top	500),	and	the	

few	cases	of	renorming	gifted	with	low	final	performance	(bottom	500).	The	

figure	also	indicates	the	mean	for	the	whole	population,	and	the	five	

measurement	time	points.	It	depicts	early	development	across	the	first	150	

epochs	of	training	(the	fifth	time	point	used	to	assess	outcome	was	at	127	

epochs).	Our	principal	interest	in	the	remaining	analyses	is	to	understand	the	

specific	neurocomputational	parameters	responsible	for	each	type	of	

developmental	profile	within	the	model,	and	whether	different	types	of	

trajectories	could	be	predicted	from	behavioural	profiles	at	the	earliest	time	

point.	The	popular	view	of	the	Feinstein	data	is	that	the	environment	drives	

changes	in	rank	order	across	development	in	gifted	individuals.	
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Figure	5.	Sample	developmental	trajectories	for	regular	verbs,	for	each	group:	

(a)	non-gifted	development,	(b)	sustained	gifted,	(c)	renorming	gifted	with	high	

outcome,	(d)	renorming	gifted	with	low	outcome	(excluding	instances	of	overt	

regression).	Trajectories	are	shown	for	the	first	150	epochs	of	training,	to	

delineate	the	earliest	phases	of	development.	The	final	time	point	to	assess	

outcome	was	127	epochs.	The	black	line	represents	the	mean	trajectory	for	the	

entire	population.	(Dinks	in	this	line	represent	epochs	were	pruning	was	

activated	in	different	individuals,	causing	dips	in	performance	in	a	few	

vulnerable	individuals.)	

	

	

	

	

	

	

	

	

	
	

	

	

	

	

	

	

(a)	

(e)	

(a)	Non	gifted	 (b)	Sustained	gifted	

(c)	Renorming	gifted,	good	outcome	 (d)	Renorming	gifted,	poor	outcome	
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Predicting	gifted	trajectories	from	neurocomputational	parameters	and	SES		

We	first	investigated	which	parameters,	intrinsic	or	extrinsic,	predicted	non-

gifted,	sustained	gifted,	or	renorming	outcomes	at	the	final	time	point.	Different	

options	were	available	for	performing	this	analysis:	by	assessing	whether	there	

were	reliable	between-group	differences	for	each	parameter;	via	a	multinomial	

logistic	regression	with	the	parameters	as	predictors	and	the	group	category	as	

the	outcome;	or	via	a	linear	discriminant	analysis	to	identify	which	linear	

combination	of	parameters	best	discriminated	each	pair	of	groups.	Each	method	

has	limitations,	including	possible	violations	of	assumptions	of	the	ANOVAs,	in	

terms	of	normal	distribution	of	scores	and	unequal	groups,	as	well	as	multiple	

comparisons;	limitations	in	the	fit	of	the	logistic	regression	model	to	the	data,	

and	use	of	linear	combinations	of	parameters	when	computationally,	artificial	

neural	network	parameters	are	primarily	non-linear	in	the	way	they	interact.	

Both	ANOVA	and	logistic	regression	methods	were	chosen	and	are	compared	in	

Table	1.	The	table	shows	pair-wise	group	comparisons,	including	effect	sizes	and	

statistical	significance	for	those	parameters	where	one	or	other	reliably	

distinguished	the	groups.	Parameters	are	grouped	by	their	processing	roles	

identified	in	the	Methods.	

	 In	line	with	the	polygenic	model	of	giftedness,	several	parameters	

distinguished	sustained	gifted	from	non-gifted	individuals,	with	hidden	unit	

number	and	family	quotient	(SES)	explaining	most	of	the	variance.	Gifted	

networks	typically	had	higher	capacity,	higher	plasticity,	a	better	processing	

signal,	a	lower	impact	of	regressive	events,	and	a	richer	environment.	The	role	of	

environment	in	gifted	outcomes	contrasts	with	its	lack	of	power	in	predicting	

delay	observed	by	Thomas	and	Knowland	(2014).	The	renorming	gifted	group	
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differed	from	non-gifted	via	similar	parameters	to	the	sustained	gifted,	but	with	

generally	smaller	effects.	Sustained	gifted	reliably	differed	from	renorming	gifted	

only	in	a	few	parameters.	The	renorming	gifted	group	had,	respectively,	earlier	

pruning	onset,	lower	semantic	learning	rate,	and	a	poorer	environment.	The	

renorming	group	had	values	on	these	parameters	similar	to	the	non-gifted	group,	

while	sustained	gifted	had	different	values.	(Appendix	Table	A	shows	the	mean	

parameter	values	for	the	three	groups).		

To	be	early	gifted	implies	the	ideal	combination	of	a	range	of	parameters,	

both	intrinsic	and	extrinsic.	The	parameters	distinguishing	sustained	and	

renorming	gifted	may	be	understood	as	follows.	Sustained	gifted	had	later	

pruning	onset	and	so	could	use	their	connectivity	resources	for	longer	(indeed,	

via	longer	growth,	perhaps	immunising	these	connections	loss).	Sustained	gifted	

had	a	higher	semantic	learning	rate.	This	enables	this	particular	type	of	network	

to	use	semantic	input	to	facilitate	exception	verb	learning,	and	so	allow	the	

phonological	pathway	to	learn	regular	verbs,	delivering	a	better	computational	

division	of	labour	for	processing	this	particular	domain.	The	sustained	gifted	

networks	had	a	richer	environment,	whereas	the	renorming	had	a	normal	

environment,	on	average.	

The	overall	picture	at	the	level	of	mechanism	is	that	sustained	gifted	

performance	required	a	combination	of	stronger	computational	properties	and	

enriched	environment.	In	line	with	the	Feinstein	analysis,	early	promise	could	be	

lost	without	aid	from	a	rich	environment.	Notably,	however,	in	the	model,	

neurocomputational	parameters	also	contributed	to	changes	in	rank	order	

across	development.	
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Table	1.	Neurocomputational	parameters	that	reliably	discriminated	between	

groups.	N-G	=	not	gifted.	S-G	=	sustained	gifted.	RN	=	renorming	gifted.	Results	

are	shown	for	two	complementary	statistical	analyses.	ANV	=	analysis	of	

variance;	scores	show	partial	eta-squared	effect	sizes.	MRL	=	multinomial	logistic	

regression;	scores	show	Wald	statistic	for	each	parameter.	*	=	effect	reliable	at	

p<.05;	**	=	effect	reliable	at	p<.01.	Empty	cells	represent	non-reliable	differences	

(p>.05).	

	

Parameter	 Role	 N-G	vs.	S-G	 N-G	vs.	RN	 S-G	vs.	RN	

	 	 ANV	 MLR	 ANV	 MLR	 ANV	 MLR	

Hidden	units	 Capacity	 **	.036	 **	32.1	 **	.024	 *	6.5	 	 	

Architecture	 Capacity	 **	.008	 	 	 	 	 	

Sparseness		 Capacity	 	 	 **	.009	 **	13.7	 	 	

Pruning	onset	 Capacity	 *	.006	 	 	 	 **	.038	 	

Pruning	prob.	 Capacity	 	 	 	 	 	 	

Pruning	threshold	 Capacity	 *	.005	 	 	 	 	 	

Learning	

		algorithm	

Capacity	

/	Plasticity	

*	.007	 	 	 	 	 	

Learning	rate	(l-r)	 Plasticity	 **	.025	 *	5.6	 **	.043	 **	8.3	 	 	

Semantic	l-r	 Plasticity	 **	.022	 *	4.7	 	 	 **	.063	 *	6.6	

Phonological	l-r	 Plasticity	 **	.021	 	 **	.024		 *	3.8	 	 	

Momentum	 Plasticity	 *	.005	 	 **	.008	 	 	 	

Weight	variance	 Plasticity	 **	.015	 	 **	.015	 *	4.3	 	 	

Temperature	 Plasticity		 	 **	13.7	 	 	 	 	
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/	Signal	

Noise	 Signal	 **	.008	 	 **	.015	 	 	 	

NN-threshold	 Signal	 **	.029	 **	7.2	 **	.059	 **	14.5	 	 	

Weight	decay	 Signal	 	 	 	 	 	 	

Family	quotient	

(SES)	

Environment	 **	.080	 **	16.4	 	 	 **	.292	 **	27.9	

	 	 	 	 	 	 	 	

	

MLR	model	fit:	S-G	vs.	RN,	X(18)=98.4,	p<.001,	Nagelkerke	R2=.557	

MLR	model	fit:	N-G	vs.	S-G,	X(18)=117.4,	p<.001,	Nagelkerke	R2=.319	

MLR	model	fit:	N-G	vs.	RN,	X(18)=211.1,	p<.001,	Nagelkerke	R2=.361	

	

Using	early	behavioural	profiles	to	predict	gifted	outcomes	

Taking	a	perspective	blind	to	the	neurocomputational	properties	of	each	

network,	profiles	of	behavioural	scores	were	assessed	at	time	1	to	see	whether	

those	with	outcomes	of	sustained	giftedness	could	be	distinguished	from	those	

with	renorming	giftedness.	Could	developmental	outcomes	be	predicted	from	

early	behavioural	markers,	blind	to	processing	properties?	The	behavioural	

profile	was	initially	constructed	from	a	rich	combination	of	domain-specific	

measures	tapping	performance	on	aspects	of	English	past	tense	morphology,	

including	accuracy	of	production	of	both	regulars	and	irregular	verb,	and	

generalization	of	inflectional	patterns	to	novel	forms	with	similarity	either	to	

regulars	or	irregulars,	measuring	generalization	of	the	rule	and	for	the	latter	also	

measuring	generalization	of	the	irregular	pattern	(see	van	der	Lely	and	Ullman,	

2001;	Thomas	et	al.,	2001,	for	the	use	of	such	a	profile	with	typical	and	atypical	
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developing	children).	However,	the	results	can	be	simplified	to	three	of	these	

measures,	performance	on	regulars,	irregulars,	and	rule	generalisation	to	novel	

verbs	that	rhymed	with	regular	verbs	in	the	training	set.	The	means	for	these	

three	measures	are	shown	in	Table	2.	

The	groups’	performance	differed	reliably	on	regular	verbs	

(F(1,193)=5.82,	p<.001,	n=.029)	and	on	all	types	of	exception	patterns	(no-

change:	F(1,193)=16.92,	p<.001,	n=.081;	vowel-change:	F(1,193)=6.07,	p=.015,	

n=.030;	arbitrary:	F(1,193)=7.24,	p=.008,	n=.036);	but	did	not	reliably	differ	on	

early	generalization	performance	to	novel	rhymes	(F(1,193)=.477,	p=.491,	

n=.002).	That	is,	sustained	giftedness	can	be	distinguished	from	renorming	

giftedness	at	the	point	where	the	groups	are	defined,	based	on	performance	on	

the	training	set,	but	not	generalisation	performance.	Sustained	gifted	individuals	

acquired	knowledge	more	quickly	but	did	not	differ	in	extracting	the	structure	of	

the	domain	to	generalise	to	new	inputs.	Again,	this	result	contrasts	with	early	

behavioural	markers	that	predicted	the	outcome	of	delay	(Thomas	&	Knowland,	

2014).	For	delay,	persisting	versus	resolving	delay	could	be	predicted	based	on	

early	differences	in	extracting	regularity	from	the	training	set,	that	is,	on	regular	

verb	performance	and	on	generalisation	performance,	while	there	was	no	

difference	on	exception	performance.	In	sum,	in	the	model,	the	outcome	of	early	

giftedness	was	predicted	behaviourally	by	the	speed	of	acquiring	knowledge	

(generalisation	being	uniformly	strong),	whereas	outcome	of	early	delay	was	

predicted	by	speed	of	extracting	regularities	(the	acquisition	of	irregular	verbs	

being	uniformly	weak).	
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Table	2.	Time	1	(13	epochs)	mean	(standard	deviation)	performance	per	group	

(%	correct	for	Regular	and	Vowel-change	Irregular	Verbs,	%	regularized	for	

Novel	regular	rhymes),	for	giftedness	groups	defined	by	early	regular	verb	

performance.	

	

Group	 Regular	 Exception	 Novel	

Not	gifted	(797)	 8.69	(12.84)	 1.00	(2.75)	 7.40	(11.18)	

Sustained	gifted	(61)	 70.51	(13.39)	 16.08	(12.39)	 56.04	(13.36)	

Renorm	high	outcome	(134)	 65.91	(11.84)	 11.55	(11.70)	 54.75	(11.52)	

Renorm	low	outcome	(6)	 59.43	(9.99)	 13.97	(19.70)	 47.48	(9.03)	

Renorm	poor	outcome	(2)	 48.29	(.34)	 16.18	(22.88)	 36.95	(1.21)	

	 	 	 	

	

	

Neurocomputational	heterogeneity	in	gifted	profiles	

Under	a	polygenic	model,	multiple	factors	combine	to	produce	giftedness,	and	

the	combination	of	factors	may	differ	across	individuals.	As	an	illustration	of	this	

point,	we	examined	three	individuals	classified	as	early	gifted	who	were	

subsequently	rated	in	the	bottom	500	at	time	5	(population	ranks	563,	683,	and	

525,	respectively).	Appendix	Table	B	contains	the	full	parameter	sets	for	these	

individual	networks,	and	compares	them	to	the	population	means	for	non-gifted,	

sustained	gifted,	and	renorming	gifted	individuals.	What	sets	these	three	

individuals	apart?	The	parameters	would	have	to	explain	first	why	the	individual	

should	show	fast	early	development,	and	second,	why	performance	should	fail	to	

sustain	this	increase	so	that	population	rank	declined.	In	each	case,	no	single	
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parameter	was	responsible;	rather	several	parameters	interacted.	The	

trajectories	were	generated	by	the	interplay	between	the	five	effects	of	capacity,	

signal	quality,	plasticity,	regressive	events,	and	the	environment.	Fast	early	

development	arose	through	high	plasticity	and	good	signal,	while	poor	final	

performance	was	associated	with	regressive	events,	limited	capacity,	or	poor	

environment.	Notably,	in	these	three	case	studies,	environment	either:	(1)	

played	no	role	in	outcome,	(3)	contributed	to	early	fast	development,	or	(3)	

contributed	to	low	final	performance	(see	Appendix	B).	Its	influence	was	

therefore	variable.	These	case	studies	are	important	in	demonstrating	that	under	

a	polygenic	model,	single	causes	of	(even	unusual)	developmental	trajectories	may	

be	hard	to	identify.	
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Discussion	

Giftedness	in	children	is	a	complex	phenomenon,	requiring	many	circumstances	

to	come	together	to	produce	potential,	combined	with	the	motivation	to	work	

hard	to	deliver	the	potential,	and	an	environment	to	support	that	development.	

The	genetic	contribution	to	giftedness	appears	to	be	polygenic,	with	common	

variations	in	many	genes	contributing	small	influences	(Spain	et	al.,	2015).	It	has	

been	argued	that	the	requirement	for	many	beneficial	circumstances	to	align	

points	to	a	multiplicative	model	of	influences	on	giftedness,	where	the	absence	of	

any	one	would	scupper	the	gifted	outcome	(Lykken,	2006).	However,	twin	

studies	have	pointed	merely	to	additive	effects	for	high	cognitive	performance	

(Plomin	&	Deary,	2015).	From	the	environmental	side,	Feinstein	(2003a)	

influentially	argued	that	differences	in	SES	could	limit	the	cognitive	and	

educational	achievements	of	bright	children,	with	bright	children	from	low	SES	

families	dropping	behind	those	from	high	SES	families.	

	 In	this	article,	we	have	argued	that	correlational	data	need	to	be	

complemented	by	mechanistic	accounts,	which	seek	to	explain	how	genetic	and	

environmental	influences	contribute	to	the	trajectories	of	cognitive	development	

exhibited	by	gifted	children.	Population-level	models	of	cognitive	development	

employing	artificial	neural	networks	offer	one	way	to	advance	such	accounts.	

Here,	we	used	a	neurocomputational	model	drawn	from	the	field	of	language	

acquisition.	Population	variability	in	development	was	produced	by	many	small	

differences	in	neurocomputational	parameters,	implementing	polygenic	effects,	

and	by	the	richness	of	the	stimulation	available	from	the	environment,	taken	to	

be	associated	with	differences	in	SES	(Hart	&	Risley,	1995).	
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The	model	demonstrated	several	key	findings.	First,	while	there	was	

some	stability	in	simulated	children’s	relative	ability	levels	across	development,	

there	were	also	changes.	For	instance,	some	individuals	showing	early	promise	

later	dropped	back	into	the	normal	range.	Performance	early	in	development	

only	predicted	27%	of	the	variance	in	the	‘adult’	models,	even	under	ideal	

conditions	of	zero	measurement	error.	This	captures	the	limited	predictive	

power	of	children’s	early	cognitive	skills	observed	in	empirical	data	(Feinstein,	

2003a).	

Second,	the	model	replicated	the	effects	of	SES	on	children	with	different	

early	ability	levels	reported	by	Feinstein	(2003a).	Notably,	simulated	individuals	

scoring	highly	early	in	development	were	more	likely	to	fall	back	in	population	

rank	when	they	were	in	families	with	lower	SES.	Feinstein’s	graph	has	provided	

influential	(and	controversial)	with	policymakers.	Here,	the	model	demonstrated	

that	the	pattern	can	be	replicated	if	SES	is	assumed	to	operate	by	influencing	

children’s	levels	of	cognitive	stimulation,	and	not	an	artefact	of	regression	to	the	

mean.	Thomas	(2017)	provides	a	deeper	consideration	of	factors	influence	shape	

of	this	function,	whether	it	may	also	arise	if	SES	impacts	directly	on	

neurocomputational	parameters,	and	implications	for	interventions	to	close	

developmental	gaps	between	children.	

Third,	examination	of	the	neurocomputational	parameters	that	produced	

trajectories	of	gifted	development	yielded	several	findings.	An	early	classification	

of	giftedness	required	a	number	of	beneficial	properties	to	coincide,	including	

both	intrinsic	neurocomputational	parameters,	and	a	high	quality	training	

environment.	There	were	some	cases	of	an	early	gifted	classification	without	the	

support	from	a	strong	environment,	but	in	almost	all	cases,	these	individuals	
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returned	to	the	normal	range	later	in	development.	In	other	words,	early	

promise	was	lost	without	the	subsequent	support	of	a	strong	environment.	A	

number	of	factors	influenced	whether	early	promise	was	sustained.	Broadly	

construed,	these	involved	the	processing	roles	of	capacity,	signal	quality,	

plasticity,	regressive	events,	and	environmental	richness.	There	was	some	

indication	that	early	behavioural	profiles	could	predict	whether	an	individual	

would	exhibit	a	sustained	gifted	outcome	without	knowledge	of	internal	

neurocomputational	properties.	Gifted	development	in	the	model	was	

characterised	by	a	fast	rate	of	acquiring	knowledge,	rather	than	extracting	the	

regularities	of	learning	domains.	However,	in	line	with	the	non-linearity	of	

developmental	trajectories,	effect	sizes	were	not	large.	

Fourth,	even	with	a	continuum	of	mechanistic	cause	of	variation	in	the	

population,	apparent	asymmetries	were	observed	between	the	influences	on	

gifted	versus	delayed	performance,	that	is,	the	tails	of	the	normal	distribution.	

Poor	environment	was	not	predictive	of	delay	but	good	environment	was	

predictive	of	giftedness	(Thomas,	Forrester	&	Ronald,	2013).	Individuals	whose	

early	delay	resolved	could	show	final	levels	of	performance	in	the	upper	half	of	

the	population,	but	early	gifted	individuals	who	fell	back	into	the	normal	range	

rarely	end	up	in	the	lower	half	of	the	population.	And	unusual	trajectories	could	

be	produced	that	were	not	explainable	by	a	single	cause,	but	only	in	terms	of	the	

interactions	of	multiple	factors.	These	characteristics	might	lead	one	to	conclude	

that	performance	in	the	tails	requires	special	mechanisms	or,	as	in	Lykken’s	

emergenic	account	(2006),	that	giftedness	can	be	scuppered	by	the	absence	of	

any	of	multiple	factors,	such	as	not	have	a	rich	environment.	Nevertheless,	in	the	
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model,	these	patterns	arose	from	additive	influences	on	non-linear	

computational	systems.	

There	are,	of	course,	many	limitations	to	the	model.	It	is	a	cognitive	model	

(as	is	required	to	make	contact	with	behaviour),	which	restricts	the	neural	

plausibility	of	its	design.	Only	a	single	system	was	modelled,	so	the	target	

behaviour	was	relatively	simple.	The	model	did	not	tackle	complexities	such	as	

the	child’s	motivation,	or	gene-environment	correlations	where	parents	offer	

more	stimulation	to	children	who	show	early	talent.	Moreover,	the	

implementation	of	SES	presented	here	does	not	address	the	possibility	that	SES	

might	affect	brain	development	and	function,	rather	than	just	levels	of	cognitive	

stimulation	(Hackman,	Farah	&	Meaney,	2010;	see	Thomas,	2017).	

Nevertheless,	the	model	of	giftedness	is	a	demonstration	of	the	type	of	

mechanistic	account	that	is	necessary	to	explain	correlational	data	at	multiple	

levels	of	description	and	generate	novel	predictions.	More	complex	models	are	

required	in	the	future,	to	make	closer	contact	with	neural	constraints,	specific	

genetic	influences,	and	more	educationally	relevant	task	domains.	Its	

simplifications	notwithstanding,	the	current	model	highlights	the	importance	of	

rich	cognitive	stimulation	for	sustaining	the	strong	cognitive	development	of	

children	who	show	early	gifted	potential.	
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Appendix	

	

Table	A.	Mean	values	for	neurocomputational	parameters	and	environmental	

quality	for	the	non-gifted	group	(N=797),	the	sustained	gifted	group	(N=61),	and	

the	re-norming	group	(N=134).	

Parameter	 Role	 Not	gifted	

	

N=797	

Sustained	

gifted	

N=61	

Re-norming	

	

N=134	

	 	 	 	 	

Hidden	units	 Capacity	 28	 39	 35	

Architecture	 Capacity	 1.00	 1.16	 1.14	

Sparseness		 Capacity	 .07	 .05	 .04	

Pruning	onset	 Capacity	 104	 125	 96	

Pruning	prob.	 Capacity	 .13	 .14	 .15	

Pruning	threshold	 Capacity	 .53	 .49	 .53	

Learning	

algorithm	

Capacity	

/	Plasticity	

.91	 1.00	 .96	

Learning	rate	(l-r)	 Plasticity	 .12	 .15	 .15	

Semantic	l-r	 Plasticity	 .53	 .72	 .55	

Phonological	l-r	 Plasticity	 .32	 .49	 .45	

Momentum	 Plasticity	 .25	 .29	 .28	

Weight	variance	 Plasticity	 .58	 .39	 .44	

Temperature	 Plasticity		

/	Signal	

1.23	 1.25	 1.31	
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Noise	 Signal	 .67	 .46	 .46	

NN-threshold	 Signal	 .07	 .12	 .12	

Weight	decay	 Signal	 6.7	x	10-7	 5.4	x	10-7	 3.5	x	10-7	

Fam.	Quot.	(SES)	 Environment	 .79	 .92	 .78	

	 	 	 	 	

	

	

Table	B.	Parameter	sets	for	the	three	case	studies	that	were	initially	classified	as	

gifted,	at	outcome	were	rated	as	poor	(bottom	25%	of	population),	but	which	did	

not	show	overt	developmental	regression.	These	are	compared	with	the	mean	

values	for	non-gifted	individuals	(NG),	sustained	gifted	(SG),	and	gifted	re-

norming	individuals	who	remained	in	the	top	50%	of	the	population	(RN).	

Bolded	values	are	those	that	mark	the	cases	as	different	from	the	three	groups.	

	

Parameter	 Role	 Case1	 Case2	 Case2	 NG	 SG	 RN	

	 	 	 	 	 	 	 	

Hidden	units	 Capacity	 25	 25	 25	 28	 39	 35	

Architecture	 Capacity	 0	 0	 1	 1	 1.16	 1.14	

Sparseness		 Capacity	 .2	 0	 .1	 .07	 .05	 .04	

Pruning	onset	 Capacity	 50	 0	 75	 104	 125	 96	

Pruning	prob.	 Capacity	 .025	 .5	 .05	 .13	 .14	 .15	

Pruning	threshold	 Capacity	 .5	 1	 .5	 .53	 .49	 .53	

Learning	algorithm	 Capacity	

/	Plasticity	

1	 1	 1	 .91	 1	 .96	
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Learning	rate	(l-r)	 Plasticity	 .15	 .175	 .175	 .12	 .15	 .15	

Semantic	l-r	 Plasticity	 .1	 .5	 .1	 .53	 .72	 .55	

Phonological	l-r	 Plasticity	 .75	 .5	 .75	 .32	 .49	 .45	

Momentum	 Plasticity	 .5	 .1	 .35	 .25	 .29	 .28	

Weight	variance	 Plasticity	 .5	 .5	 .75	 .58	 .39	 .44	

Temperature	 Plasticity		

/	Signal	

.5	 1.25	 1.25	 1.23	 1.25	 1.31	

Noise	 Signal	 .5	 .25	 .25	 .67	 .46	 .46	

NN-threshold	 Signal	 .1	 .2	 .2	 .07	 .12	 .12	

Weight	decay	x10-7	 Signal	 1.00	 2.00	 0	 6.74	 5.38	 3.47	

Fam.	Quot.	(SES)	 Environment	 .774	 .907	 .623	 .790	 .920	 .780	

	 	 	 	 	 	 	 	

	

Parameters	distinguishing	the	unusual	cases	of	early	giftedness	followed	by	poor	

outcome	were	as	follows:	

• Case	1	had	several	parameter	settings	that	contributed	to	fast	early	

development.	These	included	the	fast	learning	rate,	phonological	learning	

rate,	and	momentum,	and	well	as	a	2-layer	network	architecture	which	

changed	its	weights	quickly	and	was	optimal	for	learning	regular	verbs	

(this	individual	would	likely	not	show	early	giftedness	measured	on	

irregular	verbs).	In	addition,	the	network	had	good	signal	properties,	with	

lower	noise	and	a	higher	than	the	non-gifted	group	(a	high	NN-threshold	

meant	the	network	output	did	not	have	to	be	so	precise	to	generate	a	

correct	response).	Two	principal	parameter	settings	appeared	to	cause	

the	low	final	outcome:	the	2-layer	architecture,	which	had	limited	
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capacity;	and	an	early	onset	of	pruning,	which	cut	away	resources	and	

reduced	capacity	further.	Environment	appeared	to	play	no	role	in	this	case.	

• Case	2	showed	strong	early	development	through	a	combination	of	high	

plasticity	(a	high	learning	rate),	good	signal	(low	noise,	high	NN-

threshold),	and	a	rich	environment.	The	decline	in	performance	appeared	

to	be	due	to	regressive	events,	with	pruning	in	operation	from	the	

beginning	of	training,	leading	to	a	steady	loss	of	resources.	In	addition,	the	

architecture	was	again	2-layer,	implicating	a	limited	capacity.	

• Case	3	had	high	plasticity	(learning	rate)	and	good	signal	(low	noise,	high	

NN-threshold),	but	again	experienced	earlier	onset	of	pruning,	and	

particularly	in	this	case,	appeared	limited	by	a	poor	environment.	In	

contrast,	the	capacity	of	the	network	was	higher	


