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Supplementary material 

1. Simulation details 

1.1. Base model 

A 3-layer, backpropagation network was used to learn to output the past-tense form of 

a verb from an input vector combining a phonological representation of the verb stem 

and lexical-semantic information (Joanisse & Seidenberg, 1999). The architecture is 

shown in main article, Figure 1. The training set was the “phone” vocabulary from 

Plunkett and Marchman (1991, p. 70). This comprised an artificial language set 

constructed to reflect many of the important structural features of English past-tense 

formation. There were 500 monosyllabic verbs, constructed using consonant-vowel 

templates and the phoneme set of English. Phonemes were represented over 19 binary 

articulatory features, a distributed encoding based on standard linguistic 

categorisations (Fromkin & Rodman, 1988). Separate banks of units were used to 

represent the initial, middle, and final phonemes of each monosyllable. The output 

layer incorporated an additional 5 features to represent the affix for regular verbs. The 

input layer included 500 units to encode the lexical status of each verb in the training 

set using a localist encoding scheme (Joanisse & Seidenberg, 1999; Thomas & 

Karmiloff-Smith, 2003). Networks thus had 3x19+500=557 input units and 

3x19+5=62 output units. There were four types of verbs in the training set: (1) regular 

verbs that formed their past tense by adding one of the three allomorphs of the +ed 

rule, conditioned by the final phoneme of the verb stem (e.g., tame-tamed, wrap-
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wrapped, chat-chatted); (2) irregular verbs whose past-tense form was identical to the 

verb stem (e.g., hit-hit); (3) irregular verbs that formed their past tenses by changing 

an internal vowel (e.g., hide-hid); (4) irregular verbs whose past-tense form bore no 

relation to its verb stem (e.g., go-went). There were 410 regular verbs, and 20, 68, and 

2, respectively, of each irregular verb type. A separate set of novel verbs was 

constructed to evaluate the generalisation performance of the network. These verbs 

could differ depending on their similarity to items in the training set. Generalisation in 

this case was assessed via 410 novel verbs each of which shared two phonemes with 

one of the regular verbs in the training set, and was evaluated based on the proportion 

of these novel verbs that were assigned the correct allomorph of the regular past-tense 

rule. 

1.2. Encoding extrinsic variation  

Each network simulated a child raised in a given family, and families were assumed 

to vary in the richness of the language used. The language input was assumed to vary 

to some extent according to SES (Hart & Risley, 1995). A training set was created for 

the past-tense information available in each family environment. SES was 

implemented through generating a family quotient for each simulated child. The 

family quotient was a number between 0 and 100%. This value was used as a 

probability determining whether each verb in the perfect training set would be 

included in the family’s vocabulary. The family training set was then fixed throughout 

development. Performance was always assessed against the full perfect training set 

(analogous to a standardised test of past-tense formation applied to all children). The 

family quotient manipulation corresponded to a reduction in type frequency for both 

regular and irregular verbs. Based on the findings of Thomas, Ronald and Forrester on 

the appropriate range of intrinsic versus extrinsic variation to capture data on past 
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tense acquisition, family quotients were sampled from a uniform distribution from 

60% to 100%, corresponding to learning environments with reasonably high quality. 

This corresponds to the assumption that there is a minimum amount of linguistic 

information typically available to a child. 

1.3. Encoding intrinsic variation 

Connectionist networks contain a range of parameters that increase or decrease their 

ability to learn a given training set. Parameters such as learning rate, momentum, and 

number of hidden units feature in most published simulations. In models of 

normal/average development, parameters are optimised to achieve best learning 

(usually in the presence of the perfect training set). In the current model, a number of 

parameters were simultaneously varied across individual networks, with learning 

ability determined by their cumulative affect. The mechanistic variations producing 

differences in the rates of development were therefore only quantitative. Variations 

occurred over fourteen computational parameters, allowing for over 2000 billion 

unique individuals. 

The parameters were as follows: Network construction: Architecture, number 

of hidden units, range for initial connection weight randomisation, and sparseness of 

initial connectivity between layers. Network activation: unit threshold function, 

processing noise, and response accuracy threshold. Network adaptation: 

backpropagation error metric used in the learning algorithm, learning rate, and 

momentum. As well as an overall learning rate, there were separate parameters 

modifying the learning rate between the semantic input units and the hidden units, and 

the phonological input units and the hidden units, potentially altering the relative 

balance of these sources of information during learning, and therefore allowing more 
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lexical or phonological strategies to past-tense acquisition. Network maintenance: 

weight decay, pruning onset, pruning probability, and pruning threshold.1 

These parameters can be viewed as serving different types of processing role 

within the network, although some parameters contribute to more than one role. Some 

parameters alter the network’s learning capacity, that is, the complexity and the 

amount of information that can be learned. These include the architecture, the number 

of hidden units, and the initial sparseness of connectivity. Regressive events involving 

pruning of connections can also reduce capacity later in development, implicating the 

pruning onset, pruning probability and pruning threshold parameters in predicting 

learning trajectories (see Thomas, Knowland & Karmiloff-Smith, 2011). The nature 

of the learning algorithm determines both what can be learned and also how quickly. 

The speed of learning can be thought of as the network’s plasticity. Other parameters 

alter plasticity, including the learning rate parameter, the learning rates in semantic 

and phonological connections, the momentum, the initial range of weight variation, 

and the unit threshold function. The unit threshold function determines how 

responsive a processing unit is to variations in its input, and therefore to some extent 

determines the quality of the signal propagating through the network. Signal is also 

affected by the level of processing noise, and the accuracy required of output units to 

drive a response. Combined with the quality of the learning environment, the 

mechanisms affecting development can be broadly assigned the following four 

categories: capacity, plasticity, signal, and environment. Parameters are categorised in 

this way in the reporting of results. 

 

                                                
1 Formal specification of the parameters and their value ranges can be found in a technical report 

available at http://www.psyc.bbk.ac.uk/research/DNL/techreport/Thomas_paramtables_TR2011-2.pdf 
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1.4. Design 

Development was traced across a population of 1000 simulated individuals, focusing 

on the rate of acquisition of regular English past-tense forms. One thousand sets of the 

14 computational parameter values were generated at random, with parameters 

sampled independently (see footnote 1). These sets were instantiated as 1000 

connectionist networks. A family quotient value was generated for each network and 

used to create an individualised family training set. Each network was trained for 

1000 epochs on its family training set. At each epoch, performance was measured on 

the perfect training set. Performance was assessed on regular verbs, irregular verbs, 

and on generalisation of the past-tense rule to novel forms, in order to generate a 

behavioural ‘profile’ for each network. Performance was measured via accuracy 

levels (% correct). 

Early performance on regular verb acquisition was used to define a delay 

group (see below) and their subsequent progress was then traced with reference to the 

population normal range. The robustness of the results was tested by three subsequent 

analyses: evaluating delay defined according to the acquisition of irregular (vowel-

change) verbs; evaluating the outcome of early-identified ‘gifted’ performance, that 

is, outliers falling above the normal range rather than below it; and evaluating regular 

acquisition in a population of simpler networks which considered past tense as a 

mapping only between phonological forms and did not include lexical-semantic input. 

Results from these subsequent analyses are described to illustrate the robustness of 

the model but are not reported in detail. 
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2. Results 

2.1. Comparisons of Time 1 profiles of persisting and resolving delay groups – 

further analyses 

Time 1 performance contained some individuals with scores at floor; this may have 

differentially affected irregular verbs, which are harder to learn, producing the lack of 

a reliable difference between persisting and resolving delay profiles. The group 

comparison was carried out at each subsequent time point to evaluate this possibility. 

Of course, differences must increase on all measures, because by definition, the 

performance of persisting and resolving groups will diverge. However, if the initial 

overlap in irregular verb performance between the groups was due to floor effects, the 

effect size of the irregular difference should approach those of regular and novel verbs 

as performance comes off floor in those individuals. Figure s.1 plots the effect sizes 

of the profile differences between the groups at each time point. It demonstrates that 

the effect sizes were consistently larger for regular and novel verbs than for irregulars. 

Persisting and resolving groups, then, were distinguished at time 1 by small 

differences in the ability to abstract the regularities of past tense morphology from 

exposure to the learning environment, with the persisting group less able to do so. 

==================== 
Insert Figure s.1 about here 
==================== 

One might ask whether this result was an inevitable consequence of using 

past-tense acquisition as our model domain, and of defining delay based on the 

acquisition of regular verbs. Figure s.1 also contains an equivalent comparison 

between two groups of individuals who were defined as ‘gifted’ at time 1 (i.e., their 

performance fell more than 1 standard deviation above the population mean). Of these 

early gifted individuals, 70.0% (142) returned to the normal range by time 5, leaving 
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30.0% (61) individuals who exhibited a sustained pattern of giftedness. The time 1 

profiles for delay and giftedness demonstrated a contrasting pattern: sustained and 

non-sustained giftedness were distinguished by small initial differences in 

performance on regular and irregular verbs, but not on novel verbs. These differences 

index speed of acquisition of the training set, rather than extracting regularities that 

could be generalised to novel cases. The contrasting pattern between delay and 

giftedness suggests that the ability to extract regularities was a particular predictor of 

delay outcome in this system, not an inevitable consequence of analysing the tails of 

the distribution for networks exposed to the past-tense problem domain. 

 

2.2. MANOVA and Regression analyses to identify neurocomputational parameters 

that distinguished delay groups  

Table s.1 shows the results of a statistical comparison of the mean 

neurocomputational parameter values for simulated typically developing, persisting 

delay and resolving delay groups. It contains the results of two complementary 

analyses: multivariate analysis of variance and multinomial logistic regression (a third 

method, linear discriminant analysis was also available, but we do not report these 

results because the weighted linear combination of parameters that it produces is a 

misleading depiction of the non-linear way in which parameters interact in the 

model). Table s.2 shows equivalent results for a comparison of the resolving delay 

group, split by whether the final outcome was low (bottom 500 of population), good 

(top 500), or very good (top 200). Table s.3 incorporates the mean parameter values 

per group, as well as three case studies of individual parameter sets, which are 

discussed below. 
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==================== 

Insert Tables s.1-3 about here 

==================== 

 

2.3. Case studies of simulated persisting and resolving delay 

Table s.3 contains group means of the neurocomputational parameter sets of artificial 

neural networks in the typically developing, persisting delay, and resolving delay 

groups respectively. Such group means risk being opaque or even misleading, in that 

they may not represent the parameter set of any actual individual in the population. In 

this sense, case studies can serve a complementary role. Three case studies are also 

included in Table s.3, one exhibiting persisting delay (PD1), one exhibiting resolving 

delay with low final outcome (RD1), and one exhibiting resolving delay with very 

good final outcome (RD2). The parameter sets of these individual networks and how 

they generated the outcomes are discussed below. A consideration of each parameter 

set must first explain first why the individual should show slow early development 

and then in two cases, why this delay should resolve. 

Case PD1 had limited computational capacity in its two-layer architecture, 

sparser connectivity, and a less powerful learning algorithm. Three parameters 

contributing to plasticity were also reduced. However, there was a rich learning 

environment. PD1 was a case of poor outcome through reduced capacity and 

plasticity in the face of rich information. 

Case RD1 had fewer than normal hidden units, but a more powerful 

architecture and learning algorithm than PD1. It had two parameters contributing to 

low plasticity, and a signal property parameter requiring accurate outputs to drive 

responses. These accurate outputs take longer to acquire during training. In addition, 
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processing noise was elevated. The environment was of average quality. Early delay 

occurred due to lower plasticity and signal problems, but adequate computational 

power and an average environment led to a low-normal outcome. 

Case RD2 was similar to RD1, with adequate computational capacity but low 

plasticity and signal issues. The environment, however, was much richer, allowing for 

a high final performance level. 

Notably in these three case studies, no single parameter was the cause of the 

delayed developmental trajectory, rather several parameters interacted. We see the 

interplay between four effects of capacity, signal quality, plasticity, and the 

environment. (Not included here is the possibility of early regressive events that 

reduce capacity.) Poor capacity and plasticity were associated with poor outcome 

independent of the environment. Low plasticity and signal problems could be 

overcome with extended training, with the final outcome dependent on the quality of 

the environment. 

 

2.4. Details of the Bishop (2005) study, the data of which allowed a comparison of 

SES effects on the outcome of persisting versus resolving delay groups 

Bishop (2005) analysed data from the large British sample of twins considered in 

Dale et al. (2003) and Bishop et al. (2003). Bishop (2005) identified a sample of the 

twins who exhibited language delay risk at 4 years of age. On the basis of parental 

report at 4 years of age (Dale et al., 2003), children were identified as at risk of 

language impairment if they had a poor score on any one of three indices: (1) child 

described as not yet talking in full sentences, (2) vocabulary was in the lowest 10% 

based on parental checklist, or (3) parents answered ‘‘yes’’ to the question ‘‘Do you 

have any concerns about your child’s speech and language?’’ and selected the option 
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‘‘his/her language is developing slowly’’ when indicating the nature of the concern. 

These children, along with a sample of twins not identified as at risk, were tested at 6 

years of age on a test of English past tense production (the Past Tense probe subtest of 

the Rice-Wexler Test of Early Grammatical Impairment, 2001). At 6 years of age, 

around one third of the early language impairment risk group then met psychometric 

criteria for SLI, compared to one in ten of those not identified as at risk (Bishop et al., 

2006). Once more, these data illustrate the familiar pattern, with a high proportion of 

resolving early delay. The final sample included 442 6-year-old children, for whom 

SES information was also available (Bishop, 2005; Petrill et al., 2004; see Thomas, 

Ronald & Forrester, submitted, for further details of the full sample). Here, we focus 

on those children identified by early markers of delay, and consider the relationship 

between the SES marker, and performance on English past-tense formation. Past-

tense data were available for 94 6-year-old children both exhibiting language 

impairment risk at 4 years and meeting psychometric criteria for SLI at 6 years, for 

104 6-year-old children exhibiting language impairment risk at 4 years of age but not 

meeting psychometric criteria for SLI at 6 years, and 166 children exhibiting neither 

language impairment at 4 nor SLI at 6. 

The marker of SES was derived in the following way. Demographic 

information was obtained via questionnaire from the first contact with the family at 

age 4 and included five pieces of information. These were the father’s highest 

educational level and occupational status, the mother’s highest educational level and 

occupational status, and the age of mother at birth of the eldest child. From these data, 

an index of SES was created based on a factor analysis (Petrill et al., 2004, p.448). 

This method yielded a scale ranging from -1.57 (low SES) to +1.54 (high SES), with 

a mean of -0.16 and a standard deviation of 0.72. Figure 5, main article, shows a 
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comparison of the mean SES scores for typically developing, persisting, and resolving 

groups, as well as simulation data (SES scores and FQ parameter values have been 

rescaled to a common scale for ease of comparison). As with the simulation data, both 

early delay groups combined yielded reliably lower SES scores than the typically 

developing group (t(362)=2.75, p=.006, Cohen’s d=.290). In this case, the persisting 

group was also reliably lower in SES compared to the typical group, but no other 

differences were reliable (TD vs. PD: t(258)=3.18, p=.002; TD vs. RD: t(268)=1.44, 

p.152; PD vs. RD: t(196)=1.60, p=.111). As with the simulations, the SES measure 

demonstrated only a small ability to predict individual differences in regular past 

tense formation, explaining only 0.5% of the variance across all groups 

(F(1,362)=1.85, p=.175). In part, this was due to ceiling effects in regular verb scores. 

 

3. Discussion 

3.1. Evaluation of the model: Strengths 

The model succeeded with respect to its four identified aims: (1) to establish whether 

a quantitative account of the developmental variations in a population is sufficient to 

generate subgroups demonstrating persisting delay and resolving delay, (2) 

identifying differences in behavioural profiles when delay is first diagnosed and 

evaluating their ability to predict developmental outcomes, (3) assessing the role of 

environmental variation in causing developmental delays or aiding their resolution, 

and (4) suggesting possible mechanisms responsible for producing cases of persisting 

versus resolving delay. It was successful with respect to several roles of 

computational modelling in developmental theory: demonstrating the viability of a 

theoretical proposal, unifying a range of empirical data, and generating novel testable 

predictions. Note, however, that the current model was not specifically designed to 



	
   12	
  

address the issue of delay, nor were its parameters tailored to capture the difference 

between persisting and resolving delay. The findings were emergent, in the sense that 

the current analysis took the simulated population of Thomas, Ronald and Forrester 

(submitted), which was addressed to the issue of how SES influences language 

development, identified simulated individuals exhibiting early delay and then traced 

developmental outcomes. The findings were a consequence of the way in which 

individual variation was encoded in this model of language development. 

One might ask how robust the simulation findings were, given that only one 

population was simulated, and therefore only one proportion of persisting versus 

resolving delay cases was reported. Recall, the numbers of simulated individuals in 

each group were: typically developing (TD) = 713, persisting delay (PD) = 118, 

resolving delay low outcome (RDL) = 136, resolving delay good outcome (RDG) = 

28, and resolving delay very good outcome (RDVG) = 5. Using the same population, 

early delay was instead defined on the basis of irregular vowel-change verb 

performance, and outcomes assessed. This gave the following proportions: TD=756, 

PD=170, RDL=63, RDG=10, RDVG=1. A different population was trained using a 

simpler past-tense architecture, which only employed phonological information 

(Plunkett & Marchman, 1991). With delay defined on regular verb performance, the 

proportions were as follows: TD=765, PD=64, RDL=127, RDG=37, RDVG=7. 

Finally, using the original population, individuals were assessed on the basis of 

scoring above the normal range early in development, and outcomes were once more 

traced. Although ‘giftedness’ (G) did not behave like delay in several respects (such 

as in the contributory role of intrinsic and extrinsic parameters), similar proportions of 

persisting and resolving patterns were found: TD=797, PG=61, RGH=134, RGL=6, 
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RGVL=2. Overall, then, the qualitative pattern of results appeared to be robust over a 

number of conditions. 

3.2. Evaluation of the model: Limitations 

As with any implemented model, there were limitations. First, the model was used in 

a more illustrative setting as a notional developing system applied to a structured 

language domain, rather than as a specific model of the acquisition of inflectional 

morphology. This is because the target empirical phenomenon considered disparate 

measures of language ability for the early and later markers of language delay. In 

many cases delay was initially diagnosed with respect to vocabulary, or even global 

concerns of the parents regarding their children’s language development, with later 

assessments considering a wider range of measures that sometimes included 

morphosyntax. In the illustrative setting, the model evaluated the hypothesis that 

patterns of persisting and resolving delay could emerge in the development of a single 

system. Nonetheless, a novel prediction generated by the model was subsequently 

tested against and supported by empirical data from inflectional morphology. Second, 

the past-tense model itself involved a number of simplifications necessitated by 

population modelling. For example, the model employed an artificial past tense like 

problem domain rather than a full-scale English verb corpus. 

 One of the simplifications of the model was that changes in the intrinsic 

properties of the artificial neural networks were restricted to learning properties, 

rather than the structure of the input and output representations. Some models have 

considered how differences in phonological or semantic information supplied to 

learning systems can cause variations in developmental trajectories, perhaps even 

simulating SLI (Hoeffner & McClelland, 1993; Karaminis, 2011; Thomas & 

Karmiloff-Smith, 2003). If the key distinctions required to learn the latent structure of 
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a language domain are not present in the inputs and outputs presenting to a learning 

system, clearly acquisition cannot be successful. On the other hand, if those 

distinctions are simply encoded less saliently (that is, with smaller activation 

differences), learning may be ultimately successful but take longer. In other words, it 

is plausible that a distinction between persisting and resolving delay would occur if 

the manipulation of input and output representations were added to the parametric 

variations. Of course, this remains to be demonstrated with further simulations. 

A second simplification of the model was that intrinsic and extrinsic 

parameters were sampled independently. This means that the model did not consider 

the possibility of gene x environment correlations, i.e., the possibility that there might 

be a correlation between individuals possessing suboptimal computational parameters 

in language-learning systems and their exposure to a poorer language environment. 

While no definitive empirical evidence has demonstrated a correlation between 

children possessing, say, gene variants that place them at risk of language disorders 

and being raised in a low SES family, such a correlation is implied now or in the 

future by the combined findings that (a) language disorders are heritable and (b) as 

adults, individuals with speech and language disorders have lower SES scores (e.g., 

Bishop, North & Donlan, 1995; Felsenfeld, Broen & McGue, 1994). Were the model 

to include a correlation between intrinsic and extrinsic parameters across individuals, 

this would have a greater impact on resolving delay (where a richer environment can 

produce good final outcomes) and a lesser impact on persisting delay (where the 

principal limitation stems from an intrinsic reduction in computational capacity). 

 Despite the empirical effects that were successfully simulated by the model, it 

could, of course, turn out to be wrong: implemented models serve only to demonstrate 

the viability of theoretical proposals, they cannot demonstrate that the truth of those 
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proposals. Thus, it could be that persisting and resolving delay are qualitatively 

different, or that some instances of persisting delay are qualitatively different. It could 

also be that a proportion of the cases of resolving delay arise from the way early delay 

is diagnosed, so that early assessments of vocabulary bring together a heterogeneous 

sample of children, only some of whom will have subsequent deficits in 

morphosyntax that are characteristic of SLI. Should there be wider (or different) 

causes of vocabulary delay than grammar delay and should diagnoses of delay weigh 

heavily on the ability that is being measured, then the resolution of delay may turn out 

to be a measurement artefact. In that case, the current approach of tracing 

developmental trajectories in a single model system would not be applicable. 
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Tables 

Table s.1. Neurocomputational parameters that reliably discriminated between groups. 

TD = typically developing / no delay. PD = persistent delay. RD = resolving delay. 

Results are shown for two complementary statistical analyses. ANV = analysis of 

variance. Scores show partial eta-squared effect sizes. * = effect reliable at p<.05; ** 

= effect reliable at p<.01. MRL = multinomial logistic regression. Scores show Wald 

statistic for each parameter as a measure of effect size. Empty cells represent non-

reliable differences (p>.05). 

 
Parameter Role TD vs. PD TD vs. RD PD vs. RD 
  ANV MLR ANV MLR ANV MLR 
Hidden units Capacity ** .030 * 6.6 * .005 * 4.6 ** .031  
Architecture Capacity ** .018 ** 18.1 ** .013 ** 17.4   
Sparseness  Capacity       
Pruning onset Capacity       
Pruning prob. Capacity       
Pruning threshold Capacity   * .004  * .021 * 5.4 
Learning algorithm Capacity 

/ Plasticity 
** .172 ** 98.8 ** .012 ** 24.8 ** .104 ** 21.3 

Learning rate (l-r) Plasticity ** .030 ** 16.4 ** .044 ** 33.2   
Semantic l-r Plasticity * .005    ** .024  
Phonological l-r Plasticity ** .018 ** 7.0 ** .014 ** 8.6   
Momentum Plasticity * .006 * 4.7 ** .015 ** 12.8   
Weight variance Plasticity   ** .009 ** 11.2   
Unit threshold 
function 

Plasticity  
/ Signal 

  ** .036 ** 23.0 ** .025 * 5.5 

Processing noise Signal ** .021 ** 19.1   ** .026  
Response threshold Signal ** .038 ** 16.2 ** .063 ** 22.3   
Weight decay Signal ** .009      
Fam. Quot. (SES) Environment       
        

 
MLR model fit: TD versus all delay groups, X(72)=411.3, p<.001, Nagelkerke 
R2=.405; persisting versus resolving delay group, X(18)=79.9, p<.001, Nagelkerke 
R2=.328 
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Table s.2. Neurocomputational parameters that reliably discriminated between 

resolving delay groups. RDL = resolving delay with low outcome. RDG = resolving 

delay with good outcome. RDVG = resolving delay with very good outcome. Results 

are shown for two complementary statistical analyses. ANV = analysis of variance. 

Scores show partial eta-squared effect sizes. * = effect reliable at p<.05; ** = effect 

reliable at p<.01. MRL = multinomial logistic regression. Scores show Wald statistic 

for each parameter. Empty cells represent non-reliable differences (p>.05). 

Parameter Role RDL vs. RDG RDL vs. RGVG RDG vs. RDVG 
  ANV MLR ANV MLR ANV MLR 
Hidden units Capacity       
Architecture Capacity       
Sparseness  Capacity       
Pruning onset Capacity       
Pruning prob. Capacity       
Pruning threshold Capacity       
Learning algorithm Capacity 

/ Plasticity 
      

Learning rate (l-r) Plasticity       
Semantic l-r   + Plasticity ** .053 * 6.1     
Phonological l-r Plasticity       
Momentum Plasticity       
Weight variance Plasticity       
Unit threshold 
function 

Plasticity  
/ Signal 

** .064 ** 8.6     

Processing noise Signal       
Response threshold Signal       
Weight decay Signal       
Fam. Quot. (SES) Environment ** .089 ** 11.9 ** .095 ** 12.6 p=.058 

.111 
 

        
 
MLR model fit: comparison of three resolving groups, X(36)=57.3, p<.001, 
Nagelkerke R2=.420; pairwise comparisons: RDL vs. RDG, X(18)=47.135, p<.001, 
Nagelkerke R2=.417; RDL vs. RDVG, X(18)=4.844, p=.999, Nagelkerke R2=.128; 
RDG vs. RDVG, X(18)=12.951, p=.794, Nagelkerke R2=.567 
 
+ Why did the semantic pathway learning rate discriminate between the RL and RG 
delay groups, and not the phonological pathway learning rate? This is due to the 
definition of delay according to regular verb performance. Verbs in the training set 
can be learned by a lexical strategy, facilitated by the lexical-semantic input. 
Generalisation of the past-tense rule is dependent on phonological similarity. Were 
delay defined according to regularisation of novel verbs, the phonological pathway 
learning rate would be the more salient parameter in modifying rate of development. 
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Table s.3. Mean values for neurocomputational parameters and environment for the 

typically developing / non-delay group (TD; N=713), the persisting delay group (PD, 

N=118), the resolving delay group with low outcome (RD-L, N=136), good outcome 

(RD-G, N=28), and very good outcome (RD-VG, N=5), as well as three individual 

case studies of persisting deficit (PD1), resolving low outcome (RD1), and resolving 

very good outcome (RD2). 

 
Parameter Role Case studies TD PD RD 
  PD1 RD1 RD2   L G VG 
Hidden units Capacity 22 20 22 31 22 27 29 22 
Architecture Capacity 0 1 1 1.08 .87 .93 .93 .80 
Sparseness  Capacity .2 .1 0 .06 .07 .06 .05 .10 
Pruning onset Capacity 100 100 50 105 100 104 99 130 
Pruning prob. Capacity .1 .05 .5 .14 .15 .12 .10 .15 
Pruning threshold Capacity .2 .75 .3 .53 .55 .51 .50 .42 
Learning algorithm Capacity 

/ Plasticity 
0 1 1 .97 .66 .91 .93 1.00 

Learning rate (l-r) Plasticity .15 .075 .15 .13 .11 .11 .12 .13 
Semantic l-r Plasticity .01 .1 .5 .55 .48 .55 .74 .65 
Phonological l-r Plasticity .1 .5 .25 .38 .26 .28 .32 .32 
Momentum Plasticity .6 .2 .1 .27 .23 .22 .23 .15 
Weight variance Plasticity .5 1.0 .75 .53 .56 .64 .52 .70 
Unit threshold 
function 

Plasticity  
/ Signal 

.75 .75 .5 1.29 1.24 1.14 .82 1.00 

Processing noise Signal .5 .5 1.0 .60 .83 .59 .63 .65 
Response threshold Signal .1 .025 .025 .09 .04 .04 .03 .03 
Weight decay (x10-7) Signal 9.80 0 0 5.37 15.70 3.57 7.07 4.52 
Fam. Quot. (SES) Environment .96 .79 .96 .80 .79 .77 .86 .94 
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Figures 

 

Figure s.1. Effect size of behavioural profile comparisons between individual whose 

outlier status on regular verbs persists from Time 1 to Time 5 compared to individuals 

who return to score in the normal range for regular verbs by Time 5. Effect sizes are 

shown for three behavioural metrics, regular verb performance (Reg), generalisation of 

the regular rule to novel stems (Rule), and performance on irregular verbs (Irreg); and for 

outliers defined by low initial performance (Delayed) versus those defined by high initial 

performance (Gifted), in each case scoring more than 1 standard deviation beyond the 

population mean. 

 
 
 
 
 
 

 

 


