
What is modularity good for?

Michael S. C. Thomas (m.thomas@bbk.ac.uk) Neil Forrester (n.forrester@bbk.ac.uk)

Fiona M. Richardson (f.richardson@bbk.ac.uk)

Developmental Neurocognition Laboratory,
 School of Psychology, Birkbeck College,

University of London, WC1E 7HX UK

Abstract

We compare three types of dual-route associative
architectures for learning the English past tense problem.
Identical computational resources are used in (1) a pre-
specified modular architecture, with a rule mechanism and an
exception mechanism; (2) an architecture with two
mechanisms which demonstrates emergent specialization of
function for regular and exception verbs; and (3) a system
with redundant use of its two mechanisms. The pre-specified
modular solution was the least efficient for learning the past
tense. This was due to difficulties in resolving the competition
when its two modules attempted to drive the same output in
different ways. The results are discussed in the context of
modularity theory.

Introduction
The notion of modularity figures early in the history of
cognitive science as a design principle for building complex
computational systems. Thus Marr (1982, p.325) argued that
‘any large computation should be split up into a collection
of small, nearly independent, specialized sub-processes’.
Fodor (1983) further developed the principle in the context
of cognition, suggesting that modularity is likely to hold
sway for low-level sensory and motor systems. For Fodor,
modularity represented a probable coalition of processing
properties (domain-specificity, informational encapsulation,
innate specification, fast operation, hardwired at a neural
level, autonomous, not assembled). Modularity saves a low-
level system from having to consult all an organism’s
knowledge in order to do its job, instead acting over a
restricted propriety knowledge base and potentially
employing specialized processes (see Fodor, 2000, for the
distinction between epistemological and psychological
modularity). From a developmental perspective, a restricted
domain of operation also simplifies the learning problem
faced by the given sub-system.

Fodor (1983) additionally argued that modularity would
not apply to the central cognitive system, where access to
background knowledge is available and computations are
subject to global constraints of context. Later he argued that
the central system might include the majority of cognition,
so that modules would have limited explanatory scope
(Fodor, 2000). However, others extended the principle of
modularity to high-level cognition, under what Fodor refers
to as the massive modularity thesis (2000). This move was
driven both by (1) proposals from evolutionary psychology

that humans might inherit domain-specific reasoning
systems (e.g., for detecting social cheats, for predicting
other people’s belief states), and (2) evidence from
cognitive neuropsychology of double dissociations between
high-level abilities in acquired brain damage. Debates
continue about the necessary and sufficient features that
define a module (e.g., for Coltheart, 1999, the main feature
is domain specificity; Fodor, 2000, prefers encapsulation).

The aim of this article is to consider the computational
advantages and disadvantages in opting for modular
architectures in systems required to learn different sorts of
cognitive problem. While accepting there are innate
constraints on the architecture of the cognitive system, our
perspective is essentially developmental. By way of
illustration, Calabretta et al. (2003) argued that the genotype
of behaviorally complex organisms might be more likely to
encode modular neural architectures because this avoids
possible neural interference. They presented simulations in
which a connectionist network was presented with letters on
an input retina, and was required either to output Where on
the retina a letter appeared or What letter it was. Table 1
shows different three-layer architectures for systems with
common or shared inputs, outputs, and processing
resources. Calabretta et al. compared a system with common
processing resources (Table 1, panel 5) with a system
incorporating modular structure (panel 7). The modular
architecture was found to be consistently superior in
learning the task. This result arose because information
required to compute Where is different from that required to
compute What. There is no advantage in sharing
information in a common representational layer. The
modular architecture prevents the What channel from having
to consider irrelevant information from the Where channel
and vice versa, thereby aiding the learning process.

Table 1: Architectures with different modular commitments

 OUTPUT
 Common Separate
 PROCESSING RESOURCES
 Common Separate Common Separate

I
N
P
U
T

1 3 5 7

2 4 6 8

Common

Separate

In this article, we evaluate the utility of modularity in
another domain, English past tense. The domain is of
interest because it has a dual structure requiring a child to
learn (1) a general regularity, that the past tense of most
verbs is formed by adding ‘-ed’ to the stem (e.g.,
talk=>talked), a regularity that is productive for novel verbs
(wug=>wugged); and learn (2) a restricted set of exceptions
to the rule, of various sorts (e.g., hit=>hit, sing=>sang,
go=>went).

Pinker (1991) proposed that children learn this domain
using a modular architecture which comprises a
‘computational component containing specific kinds of rules
and representations’ and an ‘associative memory system
with certain properties of connectionist models’ (1999,
p.531), which learn the past tense rule and the exceptions,
respectively. The rule-component operates as the default,
while for exceptions, the memory component blocks the
rule mechanism and delivers the exception form. Key
empirical data indicate that children pass through an
extended phase of ‘over-regularization’ where the rule is
mistakenly applied to exception verbs (e.g.,
think=>thinked), suggestive of interference between two
mechanisms. A debate continues on the status of this theory
(see Thomas & Karmiloff-Smith, 2003, for a review).

Our interest here is not to enter into this debate per se, but
to use computational simulations to explore whether (and
how) modular solutions offer an advantage for acquiring the
past tense domain. We will begin with two assumptions.
Assumption 1: the problem can be defined as one of
learning the mapping between phonological representations
of the verb stem and past tense form (this assumption could
be wrong; see Thomas & Karmiloff-Smith, 2003).
Assumption 2: the developmental system has two learning
mechanisms available to it, one with computational
properties better suited to learning regular mappings and
one able to learn potentially arbitrary exceptions to the rule.
Our architecture corresponds to Table 1, panel 3. Given our
two mechanisms, it is important to realize that there are at
least three ways to combine them that make different
modular commitments. Diverse computational components
do not themselves define a modular architecture.

To determine the architecture, one must answer three
questions. First, do input patterns get separately channeled
(by some gatekeeper knowing about regulars and
exceptions) to the different mechanisms? Second, do the
mechanisms compete to drive the output, or can they
collaborate in producing a response? Third, are the two
mechanisms given equal opportunity to learn the problem,
or does the improving performance of one mitigate the need
for the other to improve its accuracy? We refer to these
three dimensions, illustrated in Figure 1, as Input
competition, Output competition, and Update competition,
respectively (Thomas & Richardson, 2006). Depending on
these three choices, the same processing resources can be
used to create a pre-specified modular system (inputs
channeled, components compete to drive output); a system
demonstrating emergent specialization of function of its

components (components learn the parts of the task for
which their computational properties are fitted via update
competition alone); or a redundant system (both
components attempt to learn all the task and compete to
drive output). Thomas and Richardson (2006) demonstrated
that both modular and emergent solutions exhibited double
dissociations between regular and exception verbs in the
endstate, although dissociations were stronger in the
modular case; the redundant system only showed single
dissociations.

Decisions about modularity are not, therefore, simply about
combining components with different domain-specific
computational properties – in this example, the same
components and properties deliver different modular
solutions. Restricted information flow is as important, and
indeed may deliver pre-specified modularity on its own if
the components share common processing properties.

So our research question becomes, of the three ways of
using the same resources, is the modular one the best? In
our investigations, both our learning mechanisms were
associative; respectively, a two-layer and a three-layer
connectionist network. The two-layer network is better for
learning regular mappings (faster, better generalization),
while the three-layer network is better able to learn
potentially arbitrary associations.

Pinker’s dual mechanism model
We should make clear our simulations neither sought to
implement nor to test Pinker’s (1991) dual mechanism
model of past tense acquisition. Explicitly, although we
explored a modular architecture with a rule-learning
component and an exception learning component, the rule-
learning component we used is not that intended in Pinker’s
theory, since the latter mechanism remains insufficiently
specified to allow implementation. The aim of the current
simulations was to begin to address the issues that Pinker’s
theory raises with regard to modularity by using a readily
available associative network optimized to learn regular
mappings as a proxy for a proper rule-learning mechanism.
A few comments about Pinker’s theory will make this point
clearer.

 Output

Input

Hidden

I

O
U U

U U

Figure 1: Use of (I)nput, (U)pdate and (O)utput
competition to create a modular, emergent, or redundant
system using the same two components

The blocking principle: In Pinker’s theory, the exception
mechanism blocks the operation of the rule when an
exception past tense form is retrieved from memory for a
given verb stem (see Marcus et al., 1992, p.8-18, for
details). Retrieval failures explain the occasional
interference errors between the mechanisms. These ‘over-
regularization errors’ (e.g., thinked) occur predominantly
(but not exclusively) in childhood. Marcus et al. (1992) are
clear that the idea of blocking is not based on developmental
evidence but derived from adult linguistic theory and simply
attributed to the child (p. 16). It has not been implemented.
The rule-learning mechanism: Marcus (2001) points out
that the intended rule is a symbolic operation specified over
the variable verb stem. The acquisition of this rule has not
been clearly explicated, but appears to invoke both
inductive and deductive inferential processes. For example,
Marcus et al. (1992) list possible cues that the children
might look for to recover the rule (e.g., the heterogeneity of
stems that are heard to be regularly inflected, p.134). The
inflectional system seeks a single rule, or possibly multiple
rules (p.133). Pinker (1999, p.194) describes the child’s
discovery of the rule as a sort of ‘epiphany’. Currently
available rule-induction algorithms do not seem appropriate
to capture the intended process. The rule-learning algorithm
must explain the observed gradual improvement in regular
past tense formation and also the strong generalization of
the ‘+ed’ regularity to novel stems that bear little similarity
to those that children know (e.g., ploamph=>ploamphed;
Pinker, 1991; see Marcus, 2001, for discussion). Operation
of the rule-learning device awaits further specification.
The Revised Dual Mechanism (DM) model: In 1999,
Pinker revised his model to weaken its modular
commitments. In the new model, the rule mechanism
attempts to derive the past tense rule, while the lexical
memory attempts to learn (potentially) all the past tenses.
These might include regulars that are high frequency or
sound similar to distracting exceptions (e.g.,
blinked=>blinked, think=>thought). Here one mechanism
has a restricted remit (regulars) while the other has a full
remit (all verbs), creating a partially redundant architecture.
Some have argued that this redundancy accounts for
residual past tense acquisition in children with Specific
Language Impairment (see Thomas, 2005, for discussion).

Simulations
The simulation section will proceed as follows. We first
briefly introduce details of the architectures, training set,
and parameters. We then compare developmental
trajectories for our modular, emergent, and redundant
systems on the past tense problem, considering both
performance on the training set, interference errors, and
generalization to novel verb stems. Where the exception
mechanism was required to learn the full training set, its
level of resources turned out to be crucial, and so results are
presented for exception mechanisms with low and high
resources. Among the high resource conditions, we consider
a partially redundant architecture similar to the Revised DM

model. Lastly, we will find that the three varieties of
modular system (low resource, high resource, and Revised
DM) present difficulties in coordinating the output of their
two mechanisms, and so we consider adjustments to these
models to optimize their performance.

Simulation details
Architecture: The network had 90 input units and 100
output units. The ‘rule’ mechanism comprised a 2-layer
network directly connecting input and output units. The
‘exception’ mechanism comprised a 3-layer network, with a
layer of hidden units interceding between the input and
output layers. Twenty hidden units were used in the low
resource condition and 100 in the high resource condition.
Training set: The training set was based on the simplified
rendition of the past tense problem used by Plunkett and
Marchman (1991). Verb stems were triphonemic consonant-
vowel strings encoded using binary phonetic features. Thirty
units encoded each phoneme and the outputs layer included
an additional 10-unit inflection morpheme. There were 410
regular verbs, 20 no-change exceptions, 68 vowel-change
exceptions, and 10 arbitrary exceptions. Hereafter, the
exceptions are labeled EP1, EP2, and EP3f, respectively.
Training items were split into high and low frequency
groups. To ensure the acquisition of arbitrary exceptions,
these were given a higher token frequency than all other
patterns, marked by the ‘f’.
Generalization set: Novel stems could either share two
phonemes with existing verbs (rhymes) or only one
phoneme (non-rhymes). There were 410 regular rhymes, 10
EP1 rhymes, 76 EP2 rhymes, 10 EP3f rhymes, and 56 non-
rhymes. We report extension of the rule to regular rhymes,
referred to as rule(sim); extension of the rule to non-rhymes
bearing low similarity to any stem in the training set,
referred to as rule(nosim); extension of the rule to EP2
rhymes (e.g., ling=>linged); and irregularization of EP2
rhymes (e.g., ling=>lang).
Competition mechanisms: Input competition was
implemented by training the 2-layer network and the 3-layer
network separately on regulars and exceptions respectively.
It therefore assumes a type of input gatekeeper (see Fodor,
2000, p.71-78, for discussion). For Update competition,
each mechanism was backpropagated with error signals
from the output generated by both mechanisms combined;
for no Update competition, each mechanism received error
signals from its own output response alone. To capture
Output competition, the output of each mechanism was
assigned a ‘confidence’ value reflecting how binary the
vector was (since all targets were binary feature sets).
Formally, the output vector was thresholded at 0.5 (if x<0.5,
x=0; if x>0.5, x=1) and the Euclidean distance was derived
between actual and thresholded versions. The mechanism
with the highest confidence was assigned the winner and
drove the final output. Without Output competition, the
output of each mechanism was summed to create the net
input to the output layer.

Low resources - Exception route

0%

20%

40%

60%

80%

100%

1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0

C
o

rr
e
ct

 r
e
sp

o
n

se

Modular
Emergent
Redundant

Regular EP1 EP2 EP3f Rule(sim) Rule(nosim)
 Training set Novel items

High resources - Exception route

0%

20%

40%

60%

80%

100%

1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0

C
o

rr
e
ct

 r
e
sp

o
n

se

Modular
Emergent

Redundant
Revised DM

Regular EP1 EP2 EP3f Rule(sim) Rule(nosim)
 Training set Novel items

Over-application of the rule to exception verbs

0%

20%

40%

60%

80%

100%

1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0

In
te

rf
e
re

n
c
e
 e

rr
o
rs

Modular
Emergent
Redundant
Revised DM

EP1 EP2 EP3f EP1 EP2 EP3f
 Low resources High resources

Figure 2: Developmental trajectories and interference
errors for the different architectures

Parameters: Models were trained using the
backpropagation algorithm with a cross entropy error
measure, learning rate of 0.1, momentum of 0, for 500
epochs (random order without replacement). The full
training set was used rather than an incrementally increasing
set, so these simulations do not aim to capture an early high
performance on a restricted set of regular and exception
verbs. Performance was measured at 1, 2, 5, 10, 25, 50, 100,
200, and 500 epochs of training. Six replications of each
network were run using different random seeds. Error bars
are omitted from figures for clarity but all reported
differences are reliable.

Results
We begin with the developmental trajectories generated by
each system. Figure 2 compares modular, emergent, and
redundant systems when the exception mechanism has low
resources. The modular condition generated fast learning of
regulars and high generalization of the rule, even to novel
stems bearing low similarity to anything in the training set
(sim: 97%, nosim: 65%). Pinker (1991, p.532) implies that
rule(sim) and rule(nosim) generalization should be at the
same level, suggesting our proxy rule learning mechanism is
not sufficiently powerful for the DM account. However, the
modular system could not learn the exceptions; the rule
mechanism was always more confident of its answer than
the exception mechanism because it was learning a more
function. The redundant system learnt more evenly but did
not reach ceiling on either regulars or exceptions because
the rule mechanism didn’t have the power and the exception
mechanism didn’t have the resources to learn the whole
problem. The emergent system reached ceiling on regulars
and exceptions, but with generalization at 84% (sim) and
31% (nosim).

When the exception mechanism was given higher
resources, the modular system still failed on exceptions for
the same reason, although there was no some presence of
the exceptions in the output, especially for EP3f. Both
emergent and redundant systems reached ceiling and
showed comparable generalization (sim: 87 vs 85%, nosim:
32 vs 28%). The modular system retained its much higher
generalization (sim: 97%, nosim: 61%). The Revised DM
condition, with an exception mechanism trained on both
regulars and exceptions performed little different to the
modular.

Figure 2 bottom panel depicts interference errors (over-
regularization of exceptions) for each exception type across
training, for all systems. All systems exhibited these errors,
and all showed the comparatively reduced vulnerability of
the higher frequency EP3f patterns. For modular and
Revised DM systems, the errors never went away.
Interference errors per se, therefore, are not diagnostic of
architecture. Of course, their exact timing and proportions
may be in a detailed comparison to empirical data, although
that is not the aim of the current simulations.

Let’s try and fix the modular systems. Exception
mappings are more complicated, so the rule mechanism is

always likely to be more confident of its regular response
than the exception mechanism is of its (mostly)
unsystematic transformations. One way to fix the problem is
to bias the output of the exception mechanism, amplifying
its confidence level. Figures 3-5 show the change in
developmental trajectories that different levels of biasing
produced, for the low resource modular, high resource
modular, and revised DM respectively. In each case, results
are split into training and generalization. The bias factor
simply multiplied the confidence value of the exception
mechanism by a fixed value. We plot trajectories for biases
of x1 (original), x2, x5, x10, x50, x100, x200, x250, and
x1000.

Training set: Modular (high exception resources)

0%

20%

40%

60%

80%

100%

1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0

P
ro

p
o
rt

io
n

 c
o
rr

e
ct

 1
2
5
10
50
100
200
250
1000

 Regular EP1 EP2 EP3f

Exception
route Bias

Novel items: Modular (high exception resources)

0%

20%

40%

60%

80%

100%

1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0

P
ro

p
o
rt

io
n

 o
f

re
sp

o
n

se
s 1

2
5
10
50
100
200
250
1000

 Rule(sim) Rule(nosim) Rule(EP2sim) Irregularise
 (EP2sim)

Exception
route Bias

Figure 4: biased trajectories for the modular system

Novel items: Modular (low exception resources)

0%

20%

40%

60%

80%

100%

1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0

P
ro

p
o
rt

io
n

 o
f

re
s
p

o
n

s
e
s 1

2
5
10
50
100
200
250
1000

 Rule(sim) Rule(nosim) Rule(EP2sim) Irregularise
 (EP2sim)

Exception
route Bias

Training set: Modular (low exception resources)

0%

20%

40%

60%

80%

100%

1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0

P
ro

p
o

rt
io

n
 c

o
rr

e
ct

1
2
5
10
50
100
200
250
1000

 Regular EP1 EP2 EP3f

Exception
route Bias

Figure 3: trajectories for the modular system with biasing
to increase the role of the exception mechanism

This way of fixing the modular systems may seem post-

hoc, but one can imagine how an optimal biasing value for
Output competition might be derived during training. The
bias starts at 1 and is increased (by some small amount)
each time the exception mechanism has the correct output
but fails to block operation of the rule mechanism.

None of the bias values considered were sufficient to
allow exceptions to be learned in the low resource modular
system (Figure 3). Notably, as exception bias values were
increased, regular learning slowed, rule generalization
decreased, and irregularization of novel stems (e.g.,
ling=>lang) increased. Nosim generalization, the key
domain of the rule mechanism, collapsed as soon as biasing
exceeded x2.

In the high resource condition, the modular system
reached ceiling performance by the end of training when the
exception bias was x200 (marked by asterisks in Figure 4).
At this bias level, generalization for rule(sim) was 83%. By
comparison, for the emergent system it was 87% and for
redundant 85%. For nosim, the modular was 4%, the
emergent was 32% and the redundant was 28%. Acquisition
of regulars was much slower for the biased high resource
modular system compared to emergent and redundant
solutions, but its acquisition of exceptions was faster.

Finally, the partially redundant Revised DM condition
revealed a similar pattern to the high resource modular on
the training set. However, since the exception mechanism
was now required to learn the whole training set, its
confidence needed greater amplification. Performance was
just under ceiling with a bias of x1000.

The main difference between Revised DM and high
resource modular was that the former did not experience the
marked slowing in regular verb acquisition, or reduction in
generalization. Final sim generalization of the rule was 90%,
slightly higher than emergent and (fully) redundant. This
marginal increase in generalization was the sole benefit of
the rule-dedicated mechanism. (Nosim was at a comparable
28%). The generalization advantage stemmed from the fact
that while the influence of the rule mechanism is initially
reduced early in training (as for the high resource modular),
some of this function was taken up early in training by the
exception mechanism, which is itself able to generalize the
rule. Figure 5 demonstrates the relative influence of the two
mechanisms in driving regulars and rule generalization.

Discussion
Modular solutions to learning the past tense were
problematic because the component mechanisms generated
different outputs for the same input, and the competition
between the mechanisms then had to be resolved. While
redundant architectures also required the settling of this
competition, the mechanisms were more often than not
offering similar outputs. What the modular system gained
by including a dedicated rule mechanism, it then lost in
mediating the competition between its two mechanisms. For
the exception mechanism to speak loud enough to block the
rule mechanism, it had to eat into the generalization offered
by the rule mechanism. Both emergent and redundant
solutions were more successful developmental solutions.
The emergent was most efficient in terms of resources

Novel items: Revised DM

0%

20%

40%

60%

80%

100%

1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0

P
ro

p
o
rt

io
n

 o
f

re
sp

o
n

se
s

1
2
5
10
50
100
200
250
1000

 Rule(sim) Rule(nosim) Rule(EP2sim) Irregularise
 (EP2sim)

Exception
route Bias

Which route drives behaviour? Application of the rule

0%

20%

40%

60%

80%

100%

1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0

%
 d

ri
v
e
n

 b
y
 E

x
c
e
p

ti
o
n

 m
e
c
h

a
n

is
m

1
2
5
10
50
100
200
250
1000

Exception
route Bias

 Regular Rule(sim) Rule(nosim) Rule(EP2sim)

Training set: Revised DM

0%

20%

40%

60%

80%

100%

1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0

P
ro

p
o
rt

io
n

 c
o
rr

e
ct

1
2
5
10
50
100
200
250
1000

 Regular EP1 EP2 EP3f

Exception
route Bias

Figure 5: biased trajectories for the Revised DM condition

because its sole reliance on Update competition encouraged
cooperation between its two components. Interference errors
in children (e.g., thinked) have been seen as diagnostic of a
modular solution and faulty blocking. However, these errors
appeared in emergent and redundant architectures as well.

Our results are consistent with a simulation result reported
by Calabretta et al. (2000). When these authors trained a
robot to learn a sensorimotor task, duplication of partially
adapted modules greatly facilitated evolution of functional
specialization. But there was no evidence that functionally
specialized modular systems had inherently better
performance or were more trainable than non-specialized
modular systems. In the language domain, our results are
reminiscent of those of Hahn and Nakisa (2000) in a model
learning the default German plural. Addition of an explicit
rule did not aid generalization (although in this case, the
rule mechanism was not an integrated developmental
element of model). Our findings do not serve to undermine
Pinker’s (1991) dual mechanism model of past tense
formation because our simulations were not an
implementation of this theory. We used an associative rule-
learning mechanism rather than a symbolic rule acting on
the stem as a variable (whose implementation is as yet
unclear). Our findings suggest the nature of ‘blocking’ will
be key for the operation of an implemented version when it
arrives.

Conclusion
What is modularity good for? When processing components
drive separate outputs and the information required by each
output is independent, modular developmental solutions
may be optimal (Calabretta et al., 2003). When processing
components receive information from a common input and
have to drive a common output, a pre-specified modular
architecture may be inefficient, since it is necessary to
resolve a competition for which module will drive output.
Either an emergent or redundant solution using the same
resources may be superior. For the problem domain
considered, cooperation is more efficient than competition.

Acknowledgments: This research was supported by UK
MRC CE Grant G0300188 to Michael Thomas

References
Calabretta, R., Di Ferdinando, A., Wagner, G. P., & Parisi,

D. (2003). What does it take to evolve behaviorally
complex organisms? Biosystems, 69, 245-262.

Calabretta, R., Nolfi, S., Parisi, D., & Wagner, G. P. (2000).
Duplication of modules facilitates the evolution of
functional specialization. Artificial Life, 6(1), 69-84.

Coltheart, M. (1999). Modularity and cognition. Trends in
Cognitive Sciences, 3(3), 115-120.

Fodor, J. A. (1983). The modularity of mind. Cambridge,
Fodor, J. A. (2000). The mind doesn’t work that way: The

scope and limits of computational psychology. MIT Press.
Hahn, U., & Nakisa, R.C. (2000). German Inflection: Single

or Dual Route? Cognitive Psychology, 41, 313-360.

Marcus, G. F. (2001). The algebraic mind: Integrating

connectionism and cognitive science. MIT Press.
Marcus, G., Pinker, S., Ullman, M., Hollander, J., Rosen, T.

& Xu, F. (1992). Overregularization in language
acquisition. Monographs of the Society for Research in
Child Development, 57 (Serial No. 228).

Marr, D. (1982). Vision. W. H. Freeman.
Pinker, S. (1991). Rules of language, Science, 253, 530-535.
Pinker, S. (1994). The Language Instinct. Penguin books.
Pinker, S. (1999). Words and rules. London: Weidenfeld &

Nicolson
Thomas, M. S. C. (2005). Characterizing compensation.

Cortex, 41(3), 434-442.
Thomas, M. S. C. & Karmiloff-Smith, A. (2003). Modeling

language acquisition in atypical phenotypes.
Psychological Review, 110(4), 647-682.

Thomas, M. S. C., & Richardson, F. (2005). Atypical
representational change: Conditions for the emergence of
atypical modularity. In M. Johnson & Y. Munakata
(Eds.), Attention and Performance XXI. Oxford: Oxford
University Press.

