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1 C

2 Connectionist Theories of
3 Learning

4 THEMIS N. KARAMINIS, MICHAEL S. C. THOMAS

5 Department of Psychological Sciences, Birkbeck College,

6 University of London, London, UK

7 Synonyms
8 Associative learning; Backpropagation of error algorithm;

9 Correlational learning; Hebbian learning; Self-organizing

10 maps

11 Definition
12 The majority or the connectionist theories of learning are

13 based on the Hebbian Learning Rule (Hebb 1949).

14 According to this rule, connections between neurons

15 presenting correlated activity are strengthened. Connec-

16 tionist theories of learning are essentially abstract

17 implementations of general features of brain plasticity in

18 architectures of artificial neural networks.

19 Theoretical Background
20 Connectionism provides a framework (Rumelhart et al.

21 1986a) for the study of cognition using Artificial Neural

22 Network models. Neural network models are architectures

23 of simple processing units (artificial neurons) interconnected

24 via weighted connections. An artificial neuron functions as

25 a detector, which produces an output activation value deter-

26 mined by the level of the total input activation and an

27 activation function. As a result, when a neural network is

28 exposed to an environment, encoded as activation patterns

29 in the input units of the network, it responds with activation

30 patterns across the units.

31 In the connectionist framework an artificial neural

32 network model depicts cognition when it is able to

33 respond to its environment with meaningful activation

34 patterns. This can be achieved by modifications of the

35 values of the connection weights, so as to regulate the

36 activation patterns in the network appropriately. There-

37 fore, connectionism suggests that learning involves the

38 shaping of the connection weights. A learning algorithm

39is necessary to determine the changes in the weight values

40by which the network can acquire domain-appropriate

41input-output mappings.

42The idea that learning in artificial neural networks

43should entail changes in the weight values was based on

44observations of neuropsychologist Donald Hebb on biolog-

45ical neural systems. Hebb (1949) proposed his cell assembly

46theory also known as Hebb’s rule or Hebb’s postulate:

47" When an axon of cell A is near enough to excite a cell B and

48repeatedly or persistently takes part in firing it, some

49growth process or metabolic change takes place in one

50or both cells such that A’s efficiency, as one of the cells

51firing B, is increased. (1949, p.62)

52Hebb’s rule suggested that connections between neu-

53rons which present correlated activity should be strength-

54ened. This type of learning was also termed correlational or

55associative learning.

56A simple mathematical formulation of the Hebbian

57learning rule is:

DWij ¼ �aiaj ð1Þ
58The change of theweight (Dwij) from a sending unit j to

59a receiving unit i should be equal to the constant �multiplied

60by the product of output activation values (ai and aj) of the
61units. The constant � is known as learning rate.

62Important Scientific Research and Open
63Questions
64Different learning algorithms have been proposed to

65implement learning in artificial neural networks. These

66algorithms could be considered as variants of the Hebbian

67rule, adjusted to different architectures and different train-

68ing methods.

69A large class of neural networks models uses

70a multilayered feed-forward architecture. This class of

71models is trained with supervised learning (Fig. 1). The

72environment is presented as pairs of input patterns and

73desired output patterns (or targets), where the target is

74provided by an external system (the notional “supervi-

75sor”). The network is trained on the task of producing the

76corresponding targets in the output when an input pattern

77is presented.
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78 The Backpropagation of Error algorithm (Rumelhart

79 et al. 1986b) as proposed for training such networks.

80 Backpropagation is an error-driven algorithm. The aim

81 of the weight changes is the minimization of the output

82 error of the network. The Backpropagation algorithm is

83 based on the delta rule:

DWij ¼ �ðti � aiÞaj ð2Þ
84 The delta rule is a modification of the Hebbian learn-

85 ing rule (Eq. 1) for neurons that learn with supervised

86 learning. In the delta rule, the weight change (Dwij) is

87 proportional to the difference between the target output

88 (ti ) and the output activation of the receiving neuron (ai ),
89 and the output activation of the sending neuron (aj ).
90 Backpropagation generalizes the delta rule in networks

91 with hidden layers, as a target activation value is not available

92 for the neurons on these internal layers. Internal layers are

93 necessary to improve the computational power of the learn-

94 ing system. In a forward pass, the Backpropagation algo-

95 rithm calculates the activations of the units of the network.

96 Next, in a backward pass the algorithm iteratively computes

97 error signals (delta terms) for the units of the deeper layers

98 of the network. The error signals express the contribution

99 of each unit to the overall error of the network. They are

100 computed based on the derivatives of the error function.

101 Error signals determine changes in the weights which

102 minimize the overall network error. The generalized delta

103 rule is used for this purpose:

DWij ¼ �diaj ð3Þ
104 According to this rule, weight changes equal to the

105 learning rate times the product of the output activation of

106 the sending unit (aj) and the delta term of the receiving unit

107 (dii ).
108 Although the Backpropagation algorithm has been

109 widely used, it employs features which are biologically

110 implausible. For example, it is implausible that error sig-

111 nals are calculated and transmitted between the neurons.

112 However, it has been argued that since forward projections

113 between neurons are often matched by backward projec-

114 tions permitting bidirectional signaling, the backward

115 projections may allow the implementation of the abstract

116 idea of the backpropagation of error.

117 Pursuing this idea, other learning algorithms have

118 been proposed to implement error-driven learning in

119 amore biologically plausible way. TheContrastive Hebbian

120 Learning algorithm (Hinton 1989) is a learning algorithm

121 for bidirectional connected networks. This algorithm con-

122 siders two phases of training in each presentation of an

123 input pattern. In the first one, known as theminus phase or

124anti-Hebbian update, the network is allowed to settle as an

125input pattern is presented to the network while the output

126units are free to adopt any activation state. These activa-

127tions serve as noise. In the second phase (plus phase or

128Hebbian update), the network settles as the input is

129presented while the output units are clamped to the target

130outputs. These activations serve as signal. The weight

131change is proportional to the difference between the prod-

132ucts of the activations of the sending and the receiving

133units in the two phases, so that the changes reinforce signal

134and reduce noise:

DWij ¼ � ai
þajþ � ai

�aj�
� � ð4Þ

135Learning is based on contrasting the two phases, hence

136the term Contrastive Hebbian Learning.

137O’Reilly and Munakata (2000) proposed the LEABRA

138(Local, Error-driven and Associative, Biologically Realistic

139Algorithm) algorithm. This algorithm combines error-

140driven and Hebbian Learning, exploiting bidirectional

141connectivity to allow the propagation of error signals in

142a biologically plausible fashion.

143The supervised learning algorithms assume a very

144detailed error signal telling each output how it should be

145responding. Other algorithms have been developed that

146assume less detailed information. These approaches are

147referred to as reinforcement learning.

148Another class of neural networks is trained with

149unsupervised learning. In this type of learning, the network

150is presented with different input patterns. The aim of the

151network is to form its own internal representations which

152reflect regularities in the input patterns.

153The Self-Organizing Map (SOM; Kohonen 1984) is an

154example of a neural network architecture that is trained with

155unsupervised learning. As shown in Fig. 2, a SOM consists

156of an array of neurons or nodes. Each node has coordinates

157on the map and is associated with a weight vector, of the

158same dimensionality as the input patterns. For example, if

159there are three dimensions in the input, there will be three

160input units, and each output unit will have a vector of

161three weights connected to those input units.

162The aim of the SOM learning algorithm is to produce

163a topographic map that reflects regularities in the set of

164input patterns. When an input pattern is presented to the

165network, the SOM training algorithm computes

166the Euclidean distance between the weight vector and the

167input pattern for each node. The node that presents the

168least Euclidean distance (winning node or best matching

169unit [BMU]) is associated with the input pattern. Next, the

170weights vectors of the neighboring nodes are changed so as

171to become more similar to the weights vector of the

2 C Connectionist Theories of Learning



Comp. by: THAMIZHVEL V Stage: Proof Chapter No.: 398 Title Name: ESL
Page Number: 0 Date:19/4/11 Time:06:45:54

172 winning node. The extent of the weight changes for each of

173 the neighboring nodes is determined by its location on the

174 map using a neighborhood function. In effect, regions of the

175 output layer compete to represent the input patterns, and

176 regional organization is enforced by short-range excit-

177 atory and long range inhibitory connections within the

178 output layer. SOMs are thought to capture aspects of the

179 organization of sensory input in the cerebral cortex.

180 Hebbian learning to associate sensory and motor topo-

181 graphic maps then provides the basis for a system that

182 learns to generate adaptive behavior in an environment.

183 Cross-References
184 ▶Adaptive Learning Systems

185 ▶Associative Learning

186 ▶Bayesian Learning

187 ▶Computational Models of Human Learning

188 ▶Connectionism

189 ▶Human Cognition and Learning

190 ▶ Learning in Artificial Neural Networks

191 ▶Parallel Distributed Processing

192▶Reinforcement Learning in Spiking Neural Networks

193▶ Self-Organized Learning
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Connectionist Theories of Learning. Fig. 1 Supervised

learning in a three-layered feed-forward neural network
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Connectionist Theories of Learning. Fig. 2 Unsupervised learning in a simple self-organizing map (SOM)
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