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Marchman’s [1] framework for simulating sensitive periods in development was 

extended to investigate whether competition is a mechanism that might contribute to 

reductions in functional plasticity with age. Under this view, the ability to learn new 

behaviors is reduced when old established behaviors are unwilling to give up shared 

representational resources. The simulations supported this hypothesis, but indicated that 

a range of factors modulated competition effects: the similarity between old learning and 

new learning, the level of representational resources, the prevailing plasticity conditions 

within the system, the timing of introduction of new learning, and the complexity of the 

problem domain.  

1.   Introduction 

1.1.   Age-related changes in plasticity 

Cognitive development frequently exhibits non-linear profiles of change. One of 

the most studied is the phenomenon of the critical period in development, in 

which functional plasticity appears to reduce with age. Research on plasticity is 

typically informed by three sources of empirical evidence: (i) the rate and upper 

limit of behavioral change at a given age; (ii) the effects of early deprivation on 

subsequent development; and (iii) recovery from damage at different ages. 

Research in this area has drawn several conclusions [2]. First, because plasticity 

is rarely ever eliminated in older individuals, the term sensitive period is viewed 

as more appropriate for age-related changes. Second, there are multiple varieties 

of sensitive period ranging from sensory processing to high-level cognitive 

abilities, often exhibiting different profiles. Third, multiple neurocomputational 

mechanisms may underlie changes in plasticity, including processes of 

entrenchment, pruning and assimilation [3]. Fourth, many sensitive periods may 

be a consequence of the basic processes underlying postnatal brain development, 

including the emergence of functionally specialized structures. In this paper, we 
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employ connectionist modeling to explore another potential source of reductions 

in plasticity with age: competition for resources. 

1.2.   Evidence for competition as a mechanism that mediates plasticity 

Competition effects on plasticity are proposed to occur under circumstances of 

sequential learning, where one behavior is learned after another (and the first 

behavior is continued). It is the later age at which the second behavior is 

acquired that would give the appearance of a sensitive period in development, all 

other things being equal. Strabismus (squint) in young children provides 

evidence for the importance of competition effects. Where the input to one eye is 

disrupted by a squint, infants often develop dominant fixation in the other eye. In 

this case, the squinting eye can lose vision, termed amblyopia. The loss of 

function is viewed as a consequence of competition for synaptic sites, where the 

dominant eye invades the areas of representation of the squinting eye, thereby 

disrupting the development of the normal geniculo-cortical connections [4]. 

Amblyopia can be reversed by patching the dominant eye and forcing the child 

to use the squinting eye. That all other things are not equal is illustrated by the 

fact that such reversal is only possible up until 6-7 years of age [5], implying that 

other conditions of plasticity are altering within the visual system. 

Modulation of competition has been argued to affect recovery from acquired 

brain damage. For example, in adult humans suffering hand paralysis following 

stroke, recovery of function in the paralyzed hand is aided by restraining the 

other functionally intact hand [6]. This is consistent with the view that recovery 

of the motor behavior in the paralyzed hand exploits the representational 

resources of the intact hand, but cannot do so while the intact hand is utilizing 

these resources. Similarly, it has been argued that following insult to the left 

cerebral hemisphere, language can be developed in the right hemisphere only 

before the age at which the right hemisphere has developed its normal functional 

circuits [7]. That is, once the right hemisphere resources are being used for their 

typical function, they are less plastic to accommodate other functions. 

Competition for resources implies that the resources are themselves limited. 

Evidence regarding exact levels of resource allocation in cognitive development 

is hard to come by. However, crowding effects following focal brain damage in 

children are suggestive that resources are not effectively infinite in cognitive 

development. Following focal damage, the long-term consequences are a general 

lowering of abilities across the child’s cognitive profile, rather than specific 

behavioral deficits [4]. The implication is that the residual resources are no 

longer sufficient to develop cognition to the expected level. 
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If competition reduces plasticity, then when the conditions of the 

competition alter, new functional plasticity should be revealed. However, such 

plasticity may not always be adaptive. It has been argued that phantom limb pain 

in amputees may in part be due to reorganization of primary somatosensory 

cortex, following an attenuation of the normal input from the amputated limb and 

invasion of adjacent areas into the limb’s representational zone. For example, 

following the loss of an arm, the representation of the cheek was observed to 

take over the arm and hand representations in somatosensory cortex [8]. 

Second language acquisition provides a strong test of the sequential learning 

paradigm. Here, it has been observed that when the second language replaces the 

first language before the age of 6, the second language can overwrite the first 

language, removing evidence of it both at behavioral and brain level [9]. Again, 

the fact that this is a phenomenon of early childhood suggests that there are other 

plasticity conditions changing across development. By contrast, when the second 

language is added to the first, brain-imaging evidence suggests that the higher 

the proficiency of the second language, the more its use is associated with 

activation of areas used by the first language, as if the second language must 

compete for the optimal functional circuits established by the first language [10]. 

Moreover, bilingualism is not a static condition but subject to continuous slow 

shifts in dominance depending on relative usage of the two languages. 

1.3.   Computational modeling of changes in functional plasticity 

Connectionist models have been used to explore how different mechanisms may 

produce a reduction in functional plasticity, providing a necessary level of 

analysis intermediate between behavior and brain [11]. The following four 

models have generated influential findings. O’Reilly and Johnson [12] 

constructed a model of filial imprinting in the chick brain using a self-organizing 

network. After a certain level of exposure to an input stimulus, no amount of 

training on a subsequent stimulus could cause the network to shift its preference 

to the second stimulus. McClelland et al. [13] also used a self-organizing 

network to simulate the ending of a sensitive period in non-native language 

phoneme discrimination. After a certain amount of training on a given phonemic 

class, the system could no longer learn a subtle distinction between two new 

similar-sounding phonemes. Marchman [1] used an associative connectionist 

network acquiring the English past tense to explore sensitive period effects in 

recovery from brain damage, arguing that connectionist networks exhibit slower 

recovery from damage the later the damage occurs in development. Lambon 

Ralph and Ehsan [14] used similar associative networks to explore age-of-
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acquisition effects – the idea that patterns appearing earlier in training show 

stronger learning and are subsequently less vulnerable to damage. 

Connectionist networks typically contain a learning rate parameter in their 

learning algorithms. This parameter modulates the size of connection weight 

changes induced by each learning experience. A reduction of plasticity with age 

could be achieved simply by reducing the value of this parameter across training. 

It is of note that none of the four preceding models used this method, holding the 

learning rate constant. Effective reductions in functional plasticity thereby 

revealed alternative mechanisms for generating sensitive periods, characterized 

respectively as self-terminating sensitive periods, assimilation and entrenchment. 

The simulations presented here extend the framework employed by 

Marchman [1] to consider the role of competition in reducing functional 

plasticity. The following key questions were addressed: 

1. In a sequential learning paradigm, does the functional plasticity of the 

learning system reduce when a later training set must compete for 

representational resources with an earlier (and continuously refreshed) 

training set? 

2. Are competition effects modulated by the level of resources, in this case the 

number of hidden units in a three-layer backpropagation network? 

3. Are competition effects modulated by the similarity between later and 

earlier training sets? 

4. Are competition effects modulated by on-going changes in the intrinsic 

plasticity conditions within the system, for instance if resource levels are 

reducing (equivalent to pruning) or the learning rate is reducing (equivalent 

to a reduction in the availability of functionally unspecified synapses [4])? 

5. If intrinsic plasticity conditions do change across development, does the 

timing of the introduction of the later training set matter? In other words, are 

competition effects worse at older ‘ages’ of the network? 

6. Are competition effects modulated by the encoding of the problem domain, 

which alters the complexity of the mappings that the network must learn? 

7. How do all of the above factors interact? 

2.   Simulation Methods 

2.1.   Basic model 

For the base learning system, Marchman’s [1] model of acquisition, loss, and 

recovery in connectionist networks was extended to consider competition. The 

simulations employed the well-understood domain of English past tense 

formation, which has often served as a test bed to illustrate the importance of the 

frequency and consistency of associative mappings in shaping performance. 
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These features are argued to influence many aspects of cognitive development 

(e.g., [15] for wider arguments in language development). The English past tense 

is of note because it is characterized by a predominant rule (e.g., talk-talked, 

drop-dropped, etc.) that extends to novel stems (e.g., wug-wugged), but also 

contains irregular verbs of different types (go-went, hit-hit, sing-sang). The past 

tense serves as a useful test domain because it allows us to examine the effects of 

problem type on competition, and in particular the modulating effects of 

consistency, type frequency, and token frequency on functional plasticity. 

The regular past tense has the highest type frequency and forms a consistent 

set of mappings (reproduce the stem, add an inflection). The different classes of 

exception verb fall on a continuum of inconsistency, with no-change past tenses 

(hit-hit) least inconsistent (reproduce the stem but don’t add an inflection), 

vowel change past tenses (sing-sang) at an intermediate level (partly reproduce 

the stem, no inflection), and arbitrary past tenses (go-went) most inconsistent (no 

relation between stem and past tense). Arbitrary past tenses have the lowest type 

frequency but require the highest token frequency in order to be acquired. 

The following simulations had a modest objective. Marchman’s model was 

relatively simple, both in its topology (a 3-layered feed forward network) and in 

its learning (the backpropagation rule). It was a cognitive model rather than a 

model of a language-related brain area, and some of its assumptions have 

restricted biological plausibility. Nevertheless, it provides a transparent 

framework in which to consider the direct consequences of five potentially 

interacting factors on competition effects: resource level, pattern consistency, 

intrinsic plasticity conditions, timing, and mapping complexity. 

2.2.   Simulation details 

Architecture: The architecture comprised a three-layer feedforward network 

with 90 input units and 100 output units. Resources levels were manipulated by 

varying the number of hidden units, from 30 (low resources: just sufficient for 

successful learning) to 50 (medium resources) to 100 units (high resources). 

Intrinsic plasticity: Models were trained with the backpropagation algorithm 

using the cross-entropy error measure. Three conditions of intrinsic plasticity 

were considered, shown in Figure 1. Under the constant condition, the learning 

rate was fixed at 0.1 (momentum = 0). Under the reducing learning rate or redux 

condition, the learning rate started higher and stepped downwards across 

training. The network’s ‘lifetime’ was 400 epochs. The learning rate changed as 

follows: epoch 1=0.3; 2=0.2; 12=0.1; 200=0.05; 300=0.01. Under the pruning 

condition, after a certain point in training, unused connections were 
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probabilistically lesioned. Beginning at 100 epochs, connections were 

permanently lesioned with a probability of 0.1 if their magnitude was less than 

0.5. Figure 2 demonstrates the result of pruning on the number of connections in 

an equivalent weight layer in a medium or a high resource level network. Solid 

lines indicate the number of weights when the network underwent training, while 

dashed lines indicate the number of weights when the network was untrained 

across the same period. This plot shows that many fewer connections are pruned 

when the network undergoes training (because the weights become larger than 

the pruning threshold), and proportionately fewer connections are lost in 

networks that start with lower resource levels.  

Simulation parameter values – hidden units, learning rate (constant or 

reducing), pruning onset, threshold, and rate – were calibrated to ensure 

successful learning of the full training set within the 400 epochs allotted to each 

network’s ‘lifetime’, under conditions of minimal resources. 

Overall training and testing sets: The training set was an artificial language 

comprising tri-phonemic verbs stems represented using an articulatory feature-

based phonological code (30 bits per phoneme). There were 410 regular verbs 

(adding –ed to form past tense); irregular verbs were of three types: 68 vowel 

change verbs, 20 no-change verbs, and 10 arbitrary verbs. The generalization set 

comprised 410 novel verbs that rhymed (shared two phonemes) with the regular 

verbs in the training set. The output layer included 10 units to encode the 

inflectional morpheme. To explore the role of increased mapping complexity, an 

alternative coding of the training set was employed. Phonemes were represented 

over a much more compact code, using 6 bits per phoneme [16]. This latter 

architecture employed 18 input units and 20 output units. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 1. The three Intrinsic plasticity conditions 
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Figure 2. The effects of pruning on the number of connection weights in equivalent layers of a 

medium resource and a high resource network. Solid lines indicate networks undergoing training. 

Dashed lines indicated networks that do not undergo training. 

 

Early and late training sets: To capture the sequential learning paradigm, 

the overall training set was split in two ways, either to maximize the 

inconsistency between early and late training sets, or to minimize the 

inconsistency. To maximize the inconsistency, the overall set was split into 

regular vs. irregular past tenses. To minimize the inconsistency, the training set 

was split into two equal halves, A and B.  

Training schedules: For simplicity, we refer to the early training set as L1 

and the later training set as L2. In the maximum inconsistency condition, we 

considered both the situations where L1 comprised regular verbs and L2 

irregular verbs, and the situation where L1 comprised irregular verbs and L2 

comprised regular verbs. In the minimum inconsistency condition, L1 and L2 

comprised the two equal halves of the training set, which were counterbalanced. 

To explore timing effects, competition either occurred when the network 

was relatively ‘young’ or when it was somewhat ‘older’. Young: L1 was trained 

for 50 epochs; L2 was then either added to or replaced L1 and training continued 

to 400 epochs. Older: L1 was trained for 200 epochs; L2 was then either added 

to or replaced L1 and training continued to 400 epochs. 

2.3.   Design 

The simulations were run in two parts. In the first part, a combinatorial design 

was used with four factors: Resources (low, medium, high), Intrinsic plasticity 

(constant, redux, pruning), Similarity (maximum inconsistency, minimum 

inconsistency), and Timing (Young, Older). There were six replications of each 

condition with different random seeds. This yielded 3x3x2x2x6=216 individual 

simulations. In the second part, this design was repeated but omitting the 

Resource factor (medium resources were used throughout) and adding a Domain 

Complexity factor (normal encoding, atypical encoding), yielding a further 

2x3x2x2x6=144 individual simulations. 
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3.   Results 

Our central question was whether competition reduced functional plasticity. The 

key contrast was the rate and final level of acquisition of the later training set 

when it was added to, and therefore had to compete with, the earlier training set 

(L1+L2) compared to when it replaced the earlier training set (L2). The rate was 

assessed by deriving the mean disparity between the developmental trajectories 

of L2 in the two conditions; the final level reflected performance on L2 at the 

end of training (400 epochs).  

Network performance was assessed via percent correct on each verb class in 

the training set (Regulars and the three exception types), as well as the 

network’s ability to extend the past tense rule (add –ed) to novel verb stems, 

referred to here as Rule patterns. Network responses were derived by using a 

nearest neighbor method to convert output activations to phoneme strings, which 

were then compared to the target output. In the following, performance on 

exception patterns is referred to via the abbreviations EP1 (hit-hit), EP2 (sing-

sang), and EP3f (go-went). The EP number emphasizes the degree of 

inconsistency of the verb class with the regular past tense, while the f indexes the 

greater token frequency of the arbitrary verb class. Mean results are reported 

averaged over the six replications, along with the standard error of the mean. 

Figures 3 and 4 depict the delay and final performance levels for the 

Similarity condition. These two figures illustrate several points. First, 

competition indeed reduced functional plasticity, both in the rate of learning and 

final level of proficiency: there are positive differences in Figure 3 for all pattern 

types in the training set. Second, competition effects were much smaller in the 

minimum inconsistency condition. In the maximum inconsistency condition, 

reductions in plasticity were more marked for generalization; they increased with 

greater inconsistency (from EP1 to EP2) but were attenuated by high token 

frequency (EP3f). Lastly, delays in learning were sometimes (irregular verbs) but 

not always (regular verbs) associated with reductions in the final level of 

proficiency. High type frequency was therefore a protective factor for final levels 

of performance in the face of competition. 

Figure 5 demonstrates that the competition effects were significantly worse 

when there were fewer representational resources available. With high resource 

levels, competition effects still reduced plasticity in terms of rate of learning 

(albeit to a lesser extent) but final performance levels were now unaffected. 

 Figure 6 indicates that reductions in plasticity due to competition interacted with 

the intrinsic plasticity conditions prevailing within the learning system, and were 

particularly exaggerated when processes of pruning reduced the level of 
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resources available. By contrast, Figure 7 indicates that as a main effect, the 

timing of the introduction of the second training set did not modulate reductions 

in plasticity due to competition. 

 

 

 

 
 

 

 

 

 

 

 
 

 

Figure 3. The delay in acquiring each pattern in its role as L2. RI-IR shows the maximum 

inconsistency condition: For Regular and Rule, irregular verbs were the corresponding L1. For EP1, 

EP2, and EP3f, regular verbs were the corresponding L1. AB shows the minimum inconsistency 

condition where for all pattern types, the corresponding L1 was the other half of the training set. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 4. Final performance level for each pattern type in its role as L2, either when competing with 

the earlier training set (L1+L2) or replacing the earlier training set (L2). Results are shown 

separately for maximum (RI-IR) and minimum (AB) inconsistency conditions. 

 

However, Figure 8 suggests that timing did interact with other factors. This 

figure depicts a 4-way interaction between timing, similarity, resource level, and 

intrinsic plasticity, and reveals complex interactions between these factors. Most 

notably, competition effects were exaggerated late in training when there was 

high inconsistency and intrinsic plasticity had itself reduced. Lastly, Figure 9 

depicts the situation of an increase in the complexity of the mappings that the 
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system was required to learn, implemented via a change in the encoding of the 

problem domain. This factor was also found to increase competition effects.  

 

 

 

 

 

 

 

 

 
Figure 5. Delay and final performance level depending on the amount of representational resources.  

 

 

 

 

 

 

 

 

 
Figure 6. Delay and final performance level depending on intrinsic plasticity conditions. 

 

 

 

 

 

 

 

 

 

 
Figure 7. Delay and final performance level depending on the timing of introduction of L2.  

 

 

 

 

 

 

 

 
 
Figure 8. 4-way interaction: Timing x Pattern similarity x Intrinsic plasticity conditions x Resources.  
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Figure 9. An increase in the complexity of the problem domain also exaggerated reductions in 

functional plasticity via competition for resources.  

4.   Discussion 

The Marchman [1] simulation framework was extended to explore whether 

competition for representational resources may be a contributory mechanism to 

reducing functional plasticity across development. Under this view, the ability to 

learn new behaviors is reduced when old established behaviors are unwilling to 

give up shared representational resources. The simulation results offered support 

for the hypothesis. 

Mechanistically, the reduction in functional plasticity due to competition 

can be viewed as related to effects of entrenchment. Both competition and 

entrenchment are consequences of previous learning. Entrenchment puts the 

system in a state where it can less readily respond to new learning. Competition 

additionally interferes with the attempts of the new learning to reconfigure the 

representational resources. Competition effects may have contributed to changes 

in plasticity reported in previous computational models of development [3]. 

The simulation results were notable for the number of interactions observed. 

Competition effects depended on consistency between old and new learning. 

They were mitigated by high type and token frequency in the later training set; 

but they were exaggerated by inconsistency, since this increased the extent to 

which the later training set had to fight to reconfigure the representational 

resources. Competition effects were made worse by other intrinsic reductions in 

plasticity conditions and when this occurred, the timing of introduction of the 

later training set became important. Competition operates over a restricted 

amount of resources: competition effects were attenuated when those resources 

were greater. They were exaggerated when the complexity of the mappings was 

increased, because greater complexity requires greater resources. Lastly, 

reductions in rate and final performance level did not always co-occur. There 

was therefore a dissociation between the two behavioral markers of functional 

plasticity. 
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These are, of course, preliminary findings, which need to be extended to 

other training sets and other learning architectures to evaluate their generality. 

The motivation for modeling work of this type is ultimately to establish an 

inventory of the mechanisms that may serve to reduce functional plasticity with 

age, and to identify the behavioral hallmarks of each mechanism. The aim is to 

prescribe appropriate interventions where people are struggling to achieve a 

desired behavioral change. What are the hallmarks of reductions in plasticity due 

to competition?  Timing effects, consistency effects, and similarity effects were 

observed but are unlikely to be unique to competition. Competition is implicated 

if there are any indications of low resource levels (e.g., low IQ, developmental 

disorders, previous damage to the system). However, the most salient evidence 

that competition is responsible for reducing functional plasticity is that greater 

plasticity is revealed when the competing behavior is removed. 
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