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Parameter definitions and specifications for population modelling 

simulations of English past-tense acquisition 

 

Michael S. C. Thomas 

 

0. Introduction 

This document contains technical details to accompany several papers that employ 

population modelling of the acquisition of English past tense formation. These 

simulations are either directly applied to capturing empirical data of children learning 

the past tense (Thomas, Ronald & Forrester, submitted; Thomas & Knowland, in 

preparation), or employ the past tense domain as an abstract learning problem within 

cognition (Thomas, Knowland & Karmiloff-Smith, 2011a, 2011b; Thomas, Forrester, 

& Ronald, in preparation a, in preparation b). 

These simulations explore a population of networks acquiring the past tense 

domain, where individual variability is included both in the parameters of the artificial 

neural networks which model the children’s learning systems, and the learning 

environment to which they are exposed. The parameters of the artificial neural 

networks are encoded in an artificial genome. Population variability in parameters is 

created by generating and breeding populations of artificial genomes. Each genome is 

realised as a parameterised network. The network is exposed to an individualised 

learning environment, generating a trajectory of behavioural development. The 

inclusion of an artificial genome level in the simulations allows two avenues of 

exploration. First, it allows us to study the associations that can arise between values 

on the artificial genome and behavioural variability that is the product of an 

implemented developmental process (see Figure 2). Second, it allows us to generate 
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individuals with different levels of genetic similarity, such as parents, siblings, 

monozygotic (identical) twins, and dizygotic (fraternal twins); siblings can be exposed 

to a shared family learning environment, unique learning events, or a combination of 

the two. Measurements of the similarity of behaviour between related individuals then 

permit the simulation of behaviour genetic designs, such as twin studies. The 

simulations therefore provide a framework to study heritability of behaviour within a 

developmental framework. 

 

Figure 1: Schematic of the population modelling simulations 

 

 

 

 

 

 

 

 

This document describes the computational parameters that varied in the 

artificial neural networks. It outlines how the range of variation for each parameter in 

the population was established. It then describes the method for designing the artificial 

genome, and the assumptions that this method embodies. The details of the breeding 

process are described. Finally, a set of lookup tables is included detailing how values 

on the artificial genome were mapped to computational parameter values in the 

artificial neural networks. Two closely related models are considered, both of which 

are trained to output the phonological form of the past tense of the English verb; one 



	   3	  

model is given the phonological form of the verb stem as input, the second model 

additionally is given lexical-semantic information about the verb as input. For each of 

these models, two sets of tables is included, one that specifies a wide range of 

computational parameter variation in the population, a second that specifies a relatively 

narrow range of variation. By combining these with training sets that also can vary 

widely or narrowly in quality, the relative contributions of internal versus external 

influences on individual differences in behaviour can be assessed. 

Section 1 outlines the parameters and artificial genome for the phonology-to-

phonology past tense network. Section 2 outlines the equivalent parameters and 

genome for the phonology-and-semantics-to-phonology past tense network. Section 3 

contains a brief note about the simplifications contained in the design of the artificial 

genome, and the extent to which it corresponds to a ‘blueprint’ (or otherwise). 

 

The technical specifications are provided to support these papers: 

 

Thomas, M. S. C., Knowland, V. C. P., & Karmiloff-Smith, A. (2011a). Mechanisms 

of developmental regression in autism and the broader phenotype: A neural 

network modeling approach. Psychological Review, 118(4), 637-654. 

Thomas, M. S. C., Knowland, V. C. P., & Karmiloff-Smith, A. (2011b). Variability in 

the severity of developmental disorders: A neurocomputational account of 

developmental regression in autism. In: E. Davelaar (Ed.), Proceedings of the 

12th Neurocomputational and Psychology Workshop, (p. 309-325). World 

Scientific. 
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Thomas, M. S. C., Ronald, A., & Forrester, N. A. (submitted). Modelling socio-

economic status effects on language development. Manuscript submitted for 

publication. 

Thomas, M. S. C., Forrester, N. A., & Ronald, A. (in preparation, a). Modelling 

associations between levels of description: What can gene-behaviour 

associations tell us about cognitive process? Manuscript in preparation. 

Thomas, M. S. C. & Knowland, V. C. P. (in preparation). Modelling mechanisms of 

persisting and resolving delay in language development. Manuscript in 

preparation 

Thomas, M. S. C., Forrester, N. A. & Ronald, A. (in preparation, b). A simulated twin 

study exploring the heritability of past tense acquisition in a population of neural 

network models. Manuscript in preparation. 

 

 

If you have any questions on the contents of this document, please contact Michael 

Thomas (m.thomas@bbk.ac.uk). 

 

Copies of papers may be downloaded from the homepage of the Developmental 

Neurocognition Laboratory (http://www.psyc.bbk.ac.uk/research/DNL/).  
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1. The phonology-to-phonology architecture 

1.1 Model architecture and parameters  

The original connectionist model employed a three-layer artificial neural network, 

comprising an input layer, a layer of internal or ‘hidden’ units, and an output layer. It 

was trained using the backpropagation algorithm (Rumelhart, Hinton, & Williams, 

1986), a type of supervised learning. The free parameters in the model were the 

number of hidden units, the learning rate, and the momentum (see below). An 

expanded set of 14 parameters was employed in the current simulations, in many cases 

to allow for additional analogues to known neurocomputational properties. However, 

backpropagation itself is not viewed as biologically plausible. We use it here in place 

of a more biologically plausible error-correction algorithm (see Thomas & McClelland, 

2008, for discussion). An introduction to the idea that parameters in connectionist 

models can explain types of cognitive variability can be found in Thomas and 

Karmiloff-Smith, 2002a). The parameters and model architecture are depicted 

schematically in Figure 2. The parameters were as follows: 

 

Building the network: 

- Architecture: In addition to the 3-layer network, a 2-layer network without a layer 

of hidden units, and a fully connected network were used. A 2-layer network has 

less computational power than a 3-layer network but learns more quickly. A fully 

connected network contains both direct connections from input to output and a 

hidden layer, and produces a computationally more powerful system. Networks 

could therefore have 1, 2, or 3 layers of connection weights. Previous connectionist 

models have proposed single or multiple pathways may be available to connect 

input and output (e.g., Westermann, 1998; Zorzi, Houghton & Butterworth, 1998), 
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and that differential use of routes may explain individual differences in behaviour 

(Harm & Seidenberg, 2004; Plaut, 1997; Thomas & Karmiloff-Smith, 2002b). 

Recent functional brain imaging of reading lend some support to this proposal (e.g., 

Richardson et al., 2011; Seghier et al., 2008).  

- Hidden units: For networks with a hidden unit layer, the number of hidden units 

could vary. Variations of the number of hidden units have been proposed to account 

for developmental deficits such as dyslexia (e.g., Harm & Seidenberg, 1999) and 

autism (e.g., Cohen, 1998), as well as individual differences (Richardson et al., 

2006a, b). We did not vary the number of hidden layers. More hidden units within a 

layer increases computational power and the rate of learning, while more layers of 

hidden units increases computational power but slows down learning, since error 

must be propagated from the output more deeply into the network to improve 

learning (see Richardson et al., 2006a,b, for a comparison of these conditions). 

- Sparseness: The architecture determined how many layers of connection weights 

existed. Of the potential connections in a layer, only a certain proportion was 

created. The sparseness parameter set the probability that any given connection 

would be created. Greater connectivity increases computational power, but can lead 

to slower learning. Under some conditions, it can also lead to poorer generalisation, 

since greater integration of information causes more item-specific and context-

specific learning (see McClelland, 2000, for a proposal that conjunctive coding may 

cause autistic symptoms, and conversely, Beversdorf, Narayanan & Hughes, 2007, 

for a proposal that the symptoms arise from sparse connectivity). 

- Weight variance: Connection weights were assigned an initial random value within 

a range depending on this parameter. E.g., if set to 0.5, weights would be 

randomised between +/- 0.5. Large initial weights take time to unlearn, which slows 
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learning (an effect known as entrenchment; see Munakata & McClelland, 2003, for 

discussion). 

 

Processing dynamics: 

- Processing noise: The net activation a receiving unit receives from a given sending 

unit is a product of the sending unit’s activation and the connection strength 

between them. Transmission noise was added to this net activation. Gaussian noise 

was used and the parameter specified the standard deviation of the noise distribution 

around zero. Noise has been used to simulate under-specified representations in 

development (e.g., to simulate Specific Language Impairment: Joanisse & 

Seidenberg, 2003; or as a candidate explanation of autistic symptoms: Simmons et 

al., 2007), and has also been proposed as an essential primitive in neural processing 

(McClelland, 1993). 

- Unit threshold function: A receiving unit sums the net activation from all sending 

units and uses an activation function to determine its consequent output. We used a 

common non-linear activation function, the sigmoid or logistic function, equivalent 

to a smoothed threshold. This function has a parameter, the temperature, which 

makes the smoothed threshold either steeper or shallower. The activation function 

was: 

€ 

Output =
1

1+ e− temperature× netinput+bias( )  

where netinput is the summed activation to a unit, bias is the negative of the unit’s 

threshold, and Output is the unit’s activation state in response to this input. A 

shallow function (low temperature) denies a unit the opportunity to make large 

output changes in response to small changes in net input, whereas a steep function 

(high temperature) approximates a non-smoothed threshold, thereby producing a 
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unit with binary response characteristics. Variations in the slope of the sigmoid 

function have been proposed as candidate explanations of disorders such as specific 

language impairment (Thomas, 2005) and schizophrenia (Cohen & Servan-

Schreiber, 1992), as well as ageing (Li & Lindenberger, 1999). Changes to the slope 

of the sigmoid have a number of effects on learning. A shallow slope means that 

processing units are less sensitive to small differences in their input. This poor 

discriminability means they will be slow to learn categorisations that rely on small 

distinctions in the input. Secondly, in the backpropagation algorithm, weight update 

for a given error signal is proportional to the slope on the sigmoid (the differential 

of the function). If the function resembles a gentle S-shape, then the slope across the 

range of unit activations will be small. A shallow sigmoid will lead directly to 

slower learning. Conversely, if the temperature is very high, producing a sigmoid 

similar to a step function, for most inputs to a unit, it will be jammed on or off 

(‘saturated’) rather than in its dynamic range. When a unit is saturated, the slope on 

the sigmoid function is flatter (the regions below or above the step). When it is in its 

dynamic range it is steep (the step). If a unit is predominantly saturated due to a 

high temperature, the flat slope will again lead to small weight changes for a given 

error signal and therefore slow learning. Finally, units with high temperatures flip 

between being saturated on or off. They are therefore ill suited to learning mappings 

requiring graduations of activation states. In sum, temperatures that are either too 

high or too low can delay learning. 

 

Network maintenance: 

- Connection weight decay: each connection’s magnitude was reduced by a small 

proportion on each presentation of a training pattern, according to the weight decay 
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parameter. The approximate range of weight decay values was derived by 

estimating a percentage of weight value that could plausibly be lost overall all of 

training (e.g., 50%), and then dividing this proportion by the number of training 

epochs (e.g., 1000) and the number of training patterns presented on each epoch 

(e.g., 508), to give a proportional reduction in the connection weights to be applied 

on each pattern presentation (e.g., 0.5/1000/508=9.84 x 10-7). To my knowledge, 

weight decay has not been used as a candidate mechanism to explain individual 

variability. 

- We did not simulate the increase in synaptic density observed in human cortex 

during infancy and early childhood; we did, however, implemented the pruning of 

spare resources from mid-childhood (Huttenlocher, 2002). The pruning process 

eliminated small connection weights. Variations in pruning have been proposed as 

an explanation of autistic symptoms, and specifically developmental regression 

(Thomas, Knowland & Karmiloff-Smith, 2011). The pruning process involved three 

parameters: onset, threshold, and probability: 

- Connection pruning – onset: Connections that were not being used were 

probabilistically pruned away after a certain point in training. The onset parameter 

determined the point in training when pruning began (see Thomas & Johnson, 2006, 

for simulations of pruning applied to sensitive periods in plasticity). 

- Connection pruning – threshold: Connections stood a chance of being pruned after 

onset only if their magnitude fell below a threshold determined by this parameter. 

The rationale is that small weights are assumed not to transmit strong activations 

and therefore not to be playing a key role in computations. They may therefore be 

removed to save on resources. 
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- Connection pruning – probability: If the magnitude of a connection fell below 

threshold after pruning had begun, it was eliminated probabilistically based on this 

parameter. High probability leads to faster loss of unused connections. Low 

probability leads to slower loss. 

 

Network adaptation: 

- Learning algorithm error measure: The backpropagation algorithm was used with 

two different metrics to determine the error signal marking the disparity between the 

network’s current output and its intended target. These were Euclidean distance and 

cross-entropy (Hinton, 1989). The Euclidean distance metric produces less weight 

change for a unit when it is committed to an erroneous response than the cross-

entropy measure. That is, when a unit is stuck on in a saturated state but the learning 

algorithm requires it to be off, or vice versa, cross-entropy will lead to faster 

changes to its weights to change its activation state than Euclidean distance. Under 

some conditions, cross-entropy can therefore be a more plastic learning algorithm, 

leading to faster learning and higher ceiling performance.  

- Learning rate: This parameter determined how much the connection weights were 

altered in response to a certain disparity between output and target during 

supervised learning. A large learning rate produces a system that learns more 

quickly but that also may be unstable, flipping between good performance on 

different parts of the problem domain. Differences in learning rate have been 

proposed as explanations of individual differences in cognitive ability (Richardson 

et al., 2006a,b) and general intelligence (Garlick, 2002), as well as developmental 

deficits (e.g., dyslexia; Harm & Seidenberg, 1999). 
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- Momentum: This parameter allowed some proportion of the weight change on the 

previous learning trial to be carried over. It serves a smoothing function to prevent 

learning from getting stuck in local, sub-optimal solutions. While a parameter often 

varied in connectionist models of development, it has not to my knowledge been 

used as a candidate explanation for individual differences in learning. 

 

Network response: 

- Nearest neighbour threshold: Network output comprised a vector of continuous 

activation values between 0 and 1, while legal responses of the network were binary 

vectors. An algorithm determined which legal phoneme was closest to the activation 

patterns at onset, nucleus, and coda. However, the phoneme was only recognised as 

a response if the activation was sufficiently close to the legal phoneme (using a root 

mean square or RMS measure). This was determined by the nearest neighbour 

threshold. (The legal phonemes could of course still be the incorrect ones for the 

target verb). The nearest neighbour computation may be viewed as equivalent to the 

settling of an unimplemented recurrent attractor network into a particular response 

state (see Plaut et al., 1996, for a model of reading development in which this 

attractor network was implemented). The nearest neighbour threshold parameter 

then indexes the efficiency of this attractor network to generate a response within 

some notional deadline. A high threshold allows an approximate output to be 

recognised as correct (i.e., larger error is tolerated); a low threshold requires a more 

exact initial output. The use of a nearest neighbour algorithm allowed the network 

to generate accuracy levels. Differences in the functioning of the attractor network 

(sometimes called ‘clean-up’ units) have been proposed as a candidate explanation 

of developmental deficits (e.g., dyslexia; Harm & & Seidenberg, 1999). 
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Figure 2: Architecture of the connectionist model of English past-tense acquisition, 

showing the internal parameters that varied in the population. 
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1.2 Calibrating parametric variation 

Two of these parameters were categorical: the architecture and learning algorithm 

metric. The others were continuously valued. In order to produce variability in the 

population according to these remaining parameters, they were calibrated them as 

follows. An initial ‘normal’ set of parameters was defined. These were estimated based 

on previous research. Each of the continuously valued parameters was then varied in 

turn, holding the all other parameters at their initial values. For each parameter, the 

range was derived that produced failure of learning up to highly successful learning. In 

some cases, parameters had a monotonic relationship to performance (e.g., hidden 

units, where more was better); in other cases, there was an optimal intermediate value 

(e.g., activation function). The aim was to determine an average or adequate value for 

each parameter, which was defined heuristically as ‘just enough to succeed and then a 

little bit more’. Values were then derived that would cause increasingly poorer or 

increasingly better performance around this value. We attempted to make poorer and 

better performance roughly symmetrical around average performance for each 

parameter. This caused some parameter ranges to be skewed. For example, 50 hidden 

units was determined as the average value in a 3-layer network. Values of 40 or 30 

would cause poorer performance. However, to achieve equivalent differences above 

average level, 100 or 200 hidden units might be necessary. We chose to emphasise 

behavioural symmetry around the average parameter value rather than parametric 

symmetry, on the grounds that the symmetrical bell curve is a common pattern 

observed in human abilities. The ranges for each parameter for the phonology-to-

phonology network are included in Figure 3. 
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We chose not to vary the input and output coding scheme. Our previous work 

suggests that, within certain limits, varying the problem encoding has similar effects on 

the developmental trajectory to altering computational parameters (Thomas & 

Karmiloff-Smith, 2003). However, recoding the problem domain can in principle have 

extreme effects on learnability, if key distinctions in the input or output are lost in the 

recoding. Some models of developmental language impairment and dyslexia propose 

that differences in the representation of phonology cause subsequent behavioural 

deficits in grammar and reading acquisition (e.g., Harm & Seidenberg, 1999; Hoeffner 

& McClelland, 1993; Joanisse, 2004). 

 Although only main effects of each parameter were considered as sources of 

variability during calibration, we expected interactions between these 

neurocomputational parameters in subsequent learning. To pick four examples: (i) 

large numbers of hidden units can partially compensate for a shallow sigmoid function 

in those processing units; (ii) having a more sparse initial connectivity is likely to 

reduce the amount of weights eliminated via pruning because their magnitudes will be 

larger; (iii) high weight decay can be countered by a higher learning rate; (iv) an over-

aggressive pruning process (e.g., with a high threshold and high probability) can be 

alleviated if its onset occurs very late in training when weights have become large, but 

exacerbated if the onset is early. Large numbers of parameter combinations were 

possible within our scheme: given the number of levels specified for each parameter, 

approximately two thousand billion unique parameter combinations were available. 
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Figure 3: Parameter values and target population frequencies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter values (x-axis) and their target frequencies in the population (y-axis) for the 

wide-genetic (black) and narrow-genetic (grey) variation conditions, for each of the 14 

computational parameters. Each gene had two alleles, coded as binary values. Several 

genes coded for each parameter value. Sets of binary values were summed and a look-
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up table used to derive each parameter value. The numbers of binary alleles for each 

parameter were as follows. G-Wide = hidden units: 10; temperature: 10; noise: 8; 

learning rate: 12; momentum: 8; weight variance: 8; architecture: 6; learning 

algorithm: 4; nearest neighbour threshold: 10; pruning onset epoch: 10; pruning 

probability: 8; pruning threshold: 10; weight decay: 10; sparseness: 12 (total 126 bits). 

G-Narrow = hidden units: 4; temperature: 6; noise: 6; learning rate: 4; momentum: 2; 

weight variance: 6; architecture: 2; learning algorithm: 4; nearest neighbour threshold: 

4; pruning onset epoch: 4; pruning probability: 4; pruning threshold: 6; weight decay: 

4; sparseness: 4 (total 60 bits). 
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1.3 Specifying an artificial genome for the model and the mechanism for breeding 

The use of genetic algorithms entails creation of an artificial genome to encode the 

neural network’s parameter values, such that all possible genomes correspond to legal 

parameter sets. In creating the genome, we made the following assumptions: 

 

• There were two copies of each gene, with genes residing on pairs of 

chromosomes.  

• For simplicity, each gene had only two variants or alleles.  

• The two alleles produced different outcomes in the functionality of the 

neurocomputational parameter which they encoded.  

• The influence of genes was intended to be additive: we did not include 

dominant or recessive effects, and genes had the same effect in combination as 

in isolation. This constraint was motivated by the finding within behavioural 

genetics that the effect of gene variants is predominantly additive on 

phenotypic outcomes (Plomin et al., 2008). Nevertheless, our method of 

implementing the mapping between gene variants and neurocomputational 

parameters did turn out to inadvertently include non-additive effects (see 

Section 4). 

• All neurocomputational parameters were polygenic. That is, their value was 

determined by the additive action of a collection of genes.  

• In the first instance, we assumed that the action of genes was not pleiotropic; 

that is, with respect to neurocomputational parameters, we assumed that no 

gene affected the value of more than one parameter at once. This simplification 

likely will not hold in many cases, and certainly the current theoretical view is 



	   18	  

that the relationship between genes and cognitive processes is pleiotropic (see, 

e.g., Kovas & Plomin, 2006). 

 

The assumption of polygenicity was motivated by the fact that we are using 

computational models to capture cognitive-level phenomena, and is a point worth 

emphasising. We expect many low-level neural variations to influence 

neurocomputational functions at the level of cognitive processes in neural circuits. We 

therefore view it as unlikely that a single gene would modulate a neurocomputational 

parameter responsible for normal cognitive variation.  

By way of illustration, the following list gives some examples (from Sapolsky, 

2005) of the low-level variations one might expect. At the level of individual neurons, 

conservatively, one might expect variation between individuals in the number of 

dendritic spines, the number of axon terminals, the level of resting potentials, the size 

of the dendritic wavelet caused by pre-synaptic activity, the excitability of the axon 

hillock, and the speed of propagation of the axon potential. At the level of two neurons 

communicating, one might expect individual variations in the amounts of 

neurotransmitter released, the numbers of receptors, the efficiency of receptors in 

binding neurotransmitters, the efficiency of producing neurotransmitters, the efficiency 

of producing receptors, and the proportions of different types of receptors. At the level 

of long-term potentiation, one might expect variation between individuals in how much 

glutamate neurotransmitter is released, the number of glutamate receptors, the ratio of 

glutamate receptor types, the level of calcium ion release, and the level of 

phosphoration of the receptors. It is likely that a range of gene variants contribute to 

each of these neural parameters. Our higher-level models encode much coarser 

neurocomputational parameters such as “level of processing noise” or “learning rate”, 
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which would correspond to the combined effect of many of the more detailed neural 

properties. 

We assumed that the combination of alleles for each polygenic 

neurocomputational parameter had a deterministic relation to the value of that 

parameter in the instantiated network: that is, the allele set alone determined the 

parameter value. We assumed (and did not instantiate) a much larger part of the 

genome that was species universal and coded for the basics of, for example, creating 

the processing units, the connections, the activation dynamics, the sensorium, the 

input-output connectivity pathways, and the mechanics of experience-dependent 

systems. 

Turning to mechanisms of breeding, we assumed that there was sexual 

reproduction, so that each gene had a 50% chance of being passed on to a gamete (egg 

or sperm), which combined with a gamete of another individual to create a new 

offspring. Although reproduction was sexual in this sense, we did not consider sex 

effects in these simulations (i.e., there were no genetic differences between males and 

females). During breeding, we assumed that there was uniform crossover and no 

linkage disequilibrium, the latter falling beyond the scope of our simulations. That is, 

the presence or absence of a given allele in a gamete was independent of the presence 

or absence of any others. This assumption is violated in humans because genes on the 

same chromosome have a greater than 50% chance of being transferred into a gamete 

together, and the closer they lie on a chromosome, the higher the chance. 

When Genetic Algorithms are used for machine learning optimisation, the most 

successful individuals of the previous generation are often retained in the next 

generation. In our case, after breeding, the previous generation died. Breeding enabled 

the creation of individuals with different degrees of relatedness, for instance as twins 
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or siblings. For some conditions, we created identical (monozygotic; MZ) or fraternal 

(dizygotic; DZ) twin pairs. MZ twins shared the same genome, while DZ twins and 

siblings were created by generating two offspring from the same set of parents, but 

from a different sperm and egg. DZ twins and siblings shared 50% of their alleles on 

average. Also in contrast to the more common use of Genetic Algorithms, we did not 

include genetic mutation during reproduction. In humans, the mutation rate is 

extremely low (e.g., Strachan & Read, 2003, cite a rate of between 1 and 4 mutations 

per 100,000 genes per generation). Mutations serve to reduce the average genetic 

similarity of siblings below 50%, and our preference was to maintain retain the 50% 

value, since it is the one deployed in standard behavioural genetic models. Several 

other aspects fell beyond the scope of the simulations. We did not model the effects of 

epistasis (interactions between genes) or epigenetic effects on gene expression; we did 

not model assortative mating – in our simulations, mates were selected at random from 

the population; and we did not model gene-environment correlations (Plomin et al., 

2008) – variation in the composition of the environment had no correlation with the 

nature of an individual’s genotype. 

 

1.4 Parameter values and their link to the artificial genome for the phonology-to-

phonology network 

For the phonology-to-phonology network, the total of number of genes used to encode 

the value of the 14 computational parameters was 126 (or two copies of 63) as follows 

– hidden units: 10; temperature: 10; noise: 8; learning rate: 12; momentum: 8; weight 

variance: 8; architecture: 6; learning algorithm: 4; nearest neighbour threshold: 10; 

pruning onset epoch: 10; pruning probability: 8; pruning threshold: 10; weight decay: 

10; sparseness: 12 (total 126 bits). 
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Figure 3 plots the range of values for each parameter against their target frequency of 

occurrence in the population. The translation of a genome into a parameter set was 

implemented by assigning alleles the value of 1 or 0, and then deriving the total for all 

the genes influencing the parameter (thereby ensuring additivity). The parameter value 

was calculated from the total using a lookup table, created by hand for each parameter 

to reflect the range of values identified during the calibration stage. The lookup tables 

for the 14 parameters (in the Wide Genetic) condition are shown below. 

 

Table 1. Lookup table linking the artificial genome to the Hidden Unit parameter, for 

the Wide Genetic Variation condition 

 Hidden Unit Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 9 10 

Population 
probability 

0.001 0.01 0.04 0.12 0.21 0.25 0.21 0.12 0.04 0.01 0.001 

Parameter value 10 20 30 40 50 60 75 100 200 350 500 
 

Table 2. Lookup table linking the artificial genome to the Temperature parameter, for 

the Wide Genetic Variation condition 

 Temperature Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 9 10 

Population 
probability 

0.001 0.01 0.04 0.12 0.21 0.25 0.21 0.12 0.04 0.01 0.001 

Parameter value 0.0625 0.125 0.25 0.5 0.75 1 1.25 1.5 2 3 4 
 

Table 3. Lookup table linking the artificial genome to the Noise parameter, for the 

Wide Genetic Variation condition 

 Noise Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 
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Population 
probability 

- 0.04 0.11 0.22 0.27 0.22 0.11 0.03 0.00 

Parameter value 0 0 0.05 0.1 0.2 0.5 2 4 6 
 

Table 4. Lookup table linking the artificial genome to the Learning Rate parameter, for 

the Wide Genetic Variation condition 

 Learning Rate Parameter Value 

Number of 
1-valued 
alleles 

0 1 2 3 4 5 6 7 8 9 10 11 12 

Population 
probability  

0.0002 0.0029 0.02 0.05 0.12 0.19 0.23 0.19 0.12 0.05 0.02 0.0029 0.0002 

Parameter 
value 

0.005 0.01 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.25 0.3 0.5 

 

Table 5. Lookup table linking the artificial genome to the Momentum parameter, for 

the Wide Genetic Variation condition 

 Momentum Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 

Population 
probability 

0.004 0.03 0.11 0.22 0.27 0.22 0.11 0.03 0.004 

Parameter value 0 0.05 0.1 0.15 0.2 0.35 0.5 0.6 0.75 
 

Table 6. Lookup table linking the artificial genome to the Weight Variation parameter, 

for the Wide Genetic Variation condition 

 Weight Variation Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 

Population 
probability 

0.004 0.03 0.11 0.22 0.27 0.22 0.11 0.03 0.004 

Parameter value 0.01 0.05 0.1 0.25 0.5 0.75 1 2 3 
 

Table 7. Lookup table linking the artificial genome to the Architecture parameter, for 

the Wide Genetic Variation condition. (0 = 2-layer, 1 = 3-layer, 2 = fully-connected) 

 Architecture Parameter Value 

Number of 1- 0 1 2 3 4 5 6 
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valued alleles 
Population 

probability 
- 0.109 - 0.781 - 0.109 - 

Parameter value 0 0 1 1 1 2 2 
 

Table 8. Lookup table linking the artificial genome to the Learning Algorithm 

parameter, for the Wide Genetic Variation condition. (0 = Euclidean distance error 

metric, 1 = cross-entropy error metric) 

 Learning Algorithm Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 

Population 
probability 

0.063 0.938 - - - 

Parameter value 0 1 1 1 1 
 

Table 9. Lookup table linking the artificial genome to the Nearest Neighbour 

Threshold parameter, for the Wide Genetic Variation condition 

 Nearest Neighbour Threshold Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 9 10 

Population 
probability 

0.001 0.010 0.044 0.117 0.451 - 0.205 0.117 0.044 0.011 - 

Parameter 
value 

0.0025 0.005 0.01 0.025 0.1 0.1 0.15 0.2 0.25 0.5 0.5 

 

Table 10. Lookup table linking the artificial genome to the Pruning Onset parameter, 

for the Wide Genetic Variation condition 

 Pruning Onset Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 9 10 

Population 
probability 

0.001 0.01 0.04 0.12 - 0.45 0.21 0.12 0.04 0.01 0.001 

Parameter value 1000 500 250 150 100 100 75 50 25 20 0 
 

Table 11. Lookup table linking the artificial genome to the Pruning Probability 

parameter, for the Wide Genetic Variation condition 
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 Pruning Probability Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 

Population 
probability 

0.004 0.03 0.11 - 0.49 0.22 0.11 0.03 0.004 

Parameter value 0 0.01 0.025 0.05 0.05 0.1 0.5 0.75 1 
 

Table 12. Lookup table linking the artificial genome to the Pruning Threshold 

parameter, for the Wide Genetic Variation condition 

 Pruning Threshold Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 9 10 

Population 
probability 
(%) 

0.001 0.01 0.04 0.12 - 0.66 - 0.12 0.04 0.01 0.001 

Parameter value 0.1 0.2 0.3 0.4 0.5 0.5 0.5 0.75 1 1.25 1.5 
 

Table 13. Lookup table linking the artificial genome to the Weight Decay parameter, 

for the Wide Genetic Variation condition 

 Weight Decay Parameter Value 

Number of 1-
valued 
alleles 

0 1 2 3 4 5 6 7 8 9 10 

Population 
probability 

- - - - 0.38 0.25 0.21 0.12 0.04 0.01 0.001 

Parameter 
value 

0 0 0 0 0 1x10-7 2x10-7 9.8x10-7 19.7x10-7 98.4x10-7 196.9x10-7 

 

Table 14. Lookup table linking the artificial genome to the Sparseness parameter, for 

the Wide Genetic Variation condition 

 Sparseness Parameter Value 

Number of 1-
valued 
alleles 

0 1 2 3 4 5 6 7 8 9 10 11 12 

Population 
probability 

- - - - - - 0.61 0.19 0.12 0.05 0.02 0.003 0.0002 

Parameter 
value 

0 0 0 0 0 0 0 0.05 0.1 0.2 0.3 0.4 0.5 
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A more constricted range of genetic variation was also considered for each 

computational parameter in the phonology-to-phonology network, shown in Figure 3 in 

grey. This required fewer genes to encode, leading to a genome with only 60 genes (2 

copies of 30). For one of the parameters, learning algorithm, there were only had two 

values in the original formulation; we restricted the range of variation by fixing the 

parameter to use cross-entropy, thus removing variation in this gene. On average, the 

parameters of the narrow condition had 40% of the range of variation of the wide 

condition. The lookup tables for the Narrow Genetic condition are shown below. 

 

Table 15. Lookup table linking the artificial genome to the Hidden Unit parameter, for 

the Narrow Genetic Variation condition 

 Hidden Unit Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 

Population 
probability 

0.06 0.25 0.38 0.25 0.06 

Parameter value 30 40 50 60 75 
 

Table 16. Lookup table linking the artificial genome to the Temperature parameter, for 

the Narrow Genetic Variation condition 

 Temperature Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 

Population 
probability 

0.02 0.09 0.23 0.31 0.23 0.09 0.02 

Parameter value 0.25 0.5 0.75 1 1.25 1.5 1.75 
 

Table 17. Lookup table linking the artificial genome to the Noise parameter, for the 

Narrow Genetic Variation condition 

 Temperature Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 
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Population 
probability 

0.02 0.09 0.23 0.31 0.23 0.09 0.02 

Parameter value 0 0.1 0.25 0.5 0.75 1 2 
 

Table 18. Lookup table linking the artificial genome to the Learning Rate parameter, 

for the Narrow Genetic Variation condition 

 Learning Rate Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 

Population 
probability 

0.06 0.25 0.38 0.25 0.06 

Parameter value 0.05 0.075 0.1 0.125 0.15 
 

Table 19. Lookup table linking the artificial genome to the Momentum parameter, for 

the Narrow Genetic Variation condition 

 Momentum Parameter Value 

Number of 1-
valued alleles 

0 1 2 

Population 
probability 

0.25 0.50 0.25 

Parameter value 0.1 0.2 0.3 
 

Table 20. Lookup table linking the artificial genome to the Weight Variation 

parameter, for the Narrow Genetic Variation condition 

 Weight Variation Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 

Population 
probability 

0.02 0.09 0.23 0.31 0.23 0.09 0.02 

Parameter value 0.05 0.1 0.25 0.5 0.75 1 1.5 
 

Table 21. Lookup table linking the artificial genome to the Architecture parameter, for 

the Narrow Genetic Variation condition. (0 = 2-layer, 1 = 3-layer, 2 = fully-connected) 

 Architecture Parameter Value 

Number of 1-
valued alleles 

0 1 2 

Population - 0.75 0.25 
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probability 
Parameter value 1 1 2 

 

Table 22. Lookup table linking the artificial genome to the Learning Algorithm 

parameter, for the Narrow Genetic Variation condition. (0 = Euclidean distance error 

metric, 1 = cross-entropy error metric) 

 Learning Algorithm Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 

Population 
probability 

- - 1.00 - - 

Parameter value 1 1 1 1 1 
 

Table 23. Lookup table linking the artificial genome to the Nearest Neighbour 

Threshold parameter, for the Narrow Genetic Variation condition 

 Nearest Neighbour Threshold Parameter 

Value 

Number of 1-
valued alleles 

0 1 2 3 4 

Population 
probability 

0.06 0.25 0.38 0.25 0.06 

Parameter value 0.025 0.05 0.1 0.2 0.5 
 

Table 24. Lookup table linking the artificial genome to the Pruning Onset parameter, 

for the Narrow Genetic Variation condition 

 Pruning Onset Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 

Population 
probability 

0.06 0.25 0.38 0.25 0.06 

Parameter value 50 75 100 125 150 
 

Table 25. Lookup table linking the artificial genome to the Pruning Probability 

parameter, for the Narrow Genetic Variation condition 

 Pruning Probability Parameter Value 
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Number of 1-
valued alleles 

0 1 2 3 4 

Population 
probability 

0.06 0.25 0.38 0.25 0.06 

Parameter value 0.025 0.05 0.1 0.2 0.3 
 

Table 26. Lookup table linking the artificial genome to the Pruning Threshold 

parameter, for the Narrow Genetic Variation condition 

 Pruning Threshold Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 

Population 
probability 

0.02 0.09 0.23 0.31 0.23 0.09 0.02 

Parameter value 0.2 0.3 0.4 0.5 0.75 1 1.25 
 

Table 27. Lookup table linking the artificial genome to the Weight Decay parameter, 

for the Narrow Genetic Variation condition 

 Weight Decay Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 

Population 
probability 

0.06 0.25 0.38 0.25 0.06 

Parameter value 98.0x10-7 20.0x10-7 10.0x10-7 2.0x10-7 0 
 

Table 28. Lookup table linking the artificial genome to the Sparseness parameter, for 

the Narrow Genetic Variation condition 

 Sparseness Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 

Population 
probability 

0.06 0.25 0.38 0.25 0.06 

Parameter value 0.4 0.3 0.2 0.1 0 
 

 

During our simulations, we considered two other conditions of genetic variation 

for the phonology-to-phonology network. These were used to assess the power of 

association analyses to predict behavioural variability from the values of the genes. In 
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the first populations, allele values of 1 and 0 had equal frequency. In these latter 

populations, the frequency of 1 and 0 alleles was unbalanced. In one population, alleles 

had a value of 1 with a probability of 70% and 0 with a probability of 30%. In the 

second, alleles had a value of 1 with a probability of 30% and a value of 0 with a 

probability of 70%. 
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2. The phonology-and-semantics-to-phonology architecture 

2.1 Introduction 

The simple phonology-to-phonology network of Plunkett & Marchman (1991, 1993) 

was altered in later work to include the influence of lexical semantic information at 

input (Joanisse & Seidenberg, 1999; Karaminis & Thomas, 2010; Thomas & 

Karmiloff-Smith, 2003; Woollams, Joanisse & Patterson, 2009). We also generated 

populations with parametric variability for an architecture including lexical-semantic 

information at input, which we refer to as the phonology-and-semantics-to-phonology 

architecture. 

 Two addition parameters were created for this architecture. Prior work has 

demonstrated that the phonological input is more influential in the learning of regular 

verbs, and particularly the extension of the regular rule to novel verbs, while the lexical 

semantic input is more influential in the learning of exception verbs (Joanisse & 

Seidenberg, 1999; Thomas & Karmiloff-Smith, 2003; Thomas, 2005). We added two 

parameters that would allow these respective influences to vary across the population. 

The two parameters served to modulate the learning rate on the connections from each 

input type. The Phonological Learning Rate was a value between 0 and 100% that 

modulated the learning rate in the connections from the phonological input units, 

whether to the hidden units or direct to the phonological output layer. The Semantic 

Learning Rate was a value between 0 and 100% that modulated the learning rate in the 

connections from the lexical semantic input units, whether to the hidden units or direct 

to the phonological output layer. 

 

2.2 Parameter values and their link to the artificial genome for the phonology-

and-semantics-to-phonology network 



	   31	  

Calibration for a Wide range of genetic variation yielded an artificial genome with 156 

genes (2 copies of 78) as follows: hidden units: 12; temperature: 12; noise: 10; learning 

rate: 12; phonological learning rate: 12; semantic learning rate: 12; momentum: 8; 

weight variance: 10; architecture: 8; learning algorithm: 4; nearest neighbour 

threshold: 6; pruning onset epoch: 10; pruning probability: 8; pruning threshold: 10; 

weight decay: 12; sparseness: 10 (total 156 bits). The lookup tables for the mapping 

between artificial genome and parameters were as follows. 

 

Table 29. Lookup table linking the artificial genome to the Hidden Unit parameter, for 

the Wide Genetic Variation condition 

 Hidden Unit Parameter Value 

Number of 
1-valued 
alleles 

0 1 2 3 4 5 6 7 8 9 10 11 12 

Population 
probability  

0.0002 0.003 0.02 0.05 0.12 0.19 0.23 0.19 0.12 0.05 0.02 0.003 0.0002 

Parameter 
value 

6 8 10 15 20 22 25 30 40 60 100 200 500 

 

Table 30. Lookup table linking the artificial genome to the Temperature parameter, for 

the Wide Genetic Variation condition 

 Temperature Parameter Value 

Number of 
1-valued 
alleles 

0 1 2 3 4 5 6 7 8 9 10 11 12 

Population 
probability  

0.0002 0.003 0.02 0.05 0.12 0.19 0.23 0.19 0.12 0.05 0.02 0.003 0.0002 

Parameter 
value 

0.0625 0.125 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.5 3 4 

 

Table 31. Lookup table linking the artificial genome to the Noise parameter, for the 

Wide Genetic Variation condition 

 Noise Parameter Value 
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Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 9 10 

Population 
probability 

0.001 0.01 0.04 0.12 0.21 0.25 0.21 0.12 0.04 0.01 0.001 

Parameter value 0 0.05 0.1 0.2 0.25 0.5 0.75 1 2 4 5 
 

Table 32. Lookup table linking the artificial genome to the Learning Rate parameter, 

for the Wide Genetic Variation condition 

 Learning Rate Parameter Value 

Number of 
1-valued 
alleles 

0 1 2 3 4 5 6 7 8 9 10 11 12 

Population 
probability  

0.0002 0.0029 0.02 0.05 0.12 0.19 0.23 0.19 0.12 0.05 0.02 0.0029 0.0002 

Parameter 
value 

0.005 0.01 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.25 0.3 0.5 

 

Table 33. Lookup table linking the artificial genome to the Phonological Learning Rate 

parameter, for the Wide Genetic Variation condition 

 Phonological Learning Rate Parameter Value 

Number of 
1-valued 
alleles 

0 1 2 3 4 5 6 7 8 9 10 11 12 

Population 
probability  

- - - 0.07 0.12 0.19 0.23 0.19 0.12 0.05 0.02 - - 

Parameter 
value 

1 1 1 1 0.75 0.5 0.25 0.1 0.05 0.01 0 0 0 

 

Table 34. Lookup table linking the artificial genome to the Semantic Learning Rate 

parameter, for the Wide Genetic Variation condition 

 Semantic Learning Rate Parameter Value 

Number of 
1-valued 
alleles 

0 1 2 3 4 5 6 7 8 9 10 11 12 

Population 
probability  

- - - - 0.19 0.19 0.23 0.19 0.12 0.05 0.02 0.003 - 

Parameter 
value 

1 1 1 1 1 0.75 0.5 0.25 0.1 0.05 0.01 0 0 
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Table 35. Lookup table linking the artificial genome to the Momentum parameter, for 

the Wide Genetic Variation condition 

 Momentum Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 

Population 
probability 

0.004 0.03 0.11 0.22 0.27 0.22 0.11 0.03 0.004 

Parameter value 0 0.05 0.1 0.15 0.2 0.35 0.5 0.6 0.75 
 

Table 36. Lookup table linking the artificial genome to the Weight Variation 

parameter, for the Wide Genetic Variation condition 

 Weight Variation Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 9 10 

Population 
probability 

0.001 0.01 0.04 0.12 0.21 0.25 0.21 0.12 0.04 0.01 0.001 

Parameter value 0.005 0.01 0.05 0.1 0.25 0.5 0.75 1 1.5 2 2.25 
 

Table 37. Lookup table linking the artificial genome to the Architecture parameter, for 

the Wide Genetic Variation condition. (0 = 2-layer, 1 = 3-layer, 2 = fully-connected) 

 Architecture Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 

Population 
probability 

- - 0.14 - 0.71 - 0.14 - - 

Parameter value 0 0 0 1 1 1 2 2 2 
 

Table 38. Lookup table linking the artificial genome to the Learning Algorithm 

parameter, for the Wide Genetic Variation condition. (0 = Euclidean distance error 

metric, 1 = cross-entropy error metric) 

 Learning Algorithm Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 

Population 
probability 

0.063 0.938 - - - 

Parameter value 0 1 1 1 1 
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Table 39. Lookup table linking the artificial genome to the Nearest Neighbour 

Threshold parameter, for the Wide Genetic Variation condition 

 Nearest Neighbour Threshold Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 

Population 
probability 

0.02 0.09 0.23 0.31 0.23 0.09 0.02 

Parameter value 0.005 0.01 0.025 0.05 0.1 0.2 0.5 
 

Table 40. Lookup table linking the artificial genome to the Pruning Onset parameter, 

for the Wide Genetic Variation condition 

 Pruning Onset Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 9 10 

Population 
probability 

0.001 0.01 0.04 0.12 - 0.45 0.21 0.12 0.04 0.01 - 

Parameter value 1000 500 250 150 100 100 75 50 25 0 0 
 

Table 41. Lookup table linking the artificial genome to the Pruning Probability 

parameter, for the Wide Genetic Variation condition 

 Pruning Probability Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 

Population 
probability 

0.004 0.03 0.11 - 0.49 0.22 0.11 0.03 0.004 

Parameter value 0 0.01 0.025 0.05 0.05 0.1 0.5 0.75 1 
 

Table 42. Lookup table linking the artificial genome to the Pruning Threshold 

parameter, for the Wide Genetic Variation condition 

 Pruning Threshold Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 9 10 

Population 
probability 
(%) 

0.001 0.01 0.04 0.12 - 0.66 - 0.12 0.04 0.01 0.001 

Parameter value 0.1 0.2 0.3 0.4 0.5 0.5 0.5 0.75 1 1.25 1.5 
 



	   35	  

Table 43. Lookup table linking the artificial genome to the Weight Decay parameter, 

for the Wide Genetic Variation condition 

 Weight Decay Parameter Value 

Number of 
1-valued 
alleles 

0 1 2 3 4 5 6 7 8 9 10 11 12 

Population 
probability  

0.001 0.01 0.04 0.12 0.21 0.45 - 0.12 0.06 - - - - 

Parameter 
value 

984.3 x10-7	   196.9x10-7	   98.4x10-7 19.7x10-7	   9.8x10-7	   2x10-7	   2x10-7	   1x10-7	   0 0 0 0 0 

 

Table 44. Lookup table linking the artificial genome to the Sparseness parameter, for 

the Wide Genetic Variation condition 

 Sparseness Parameter Value 

Number of 1-
valued 
alleles 

0 1 2 3 4 5 6 7 8 9 10 11 12 

Population 
probability 

- - - - - 0.62 0.21 0.12 0.04 0.01 0.001 0.003 0.0002 

Parameter 
value 

0 0 0 0 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

 

 

Finally, a condition for Narrow Variation was created for the phonology-and-

semantics-to-phonology network. This yielded an artificial genome with 80 genes (2 

copies of 40) as follows: hidden units: 4; temperature: 6; noise: 6; learning rate: 6; 

phonological learning rate: 6; semantic learning rate: 4; momentum: 4; weight 

variance: 6; architecture: 2; learning algorithm: 4; nearest neighbour threshold: 6; 

pruning onset epoch: 4; pruning probability: 6; pruning threshold: 6; weight decay: 6; 

sparseness: 4 (total 80 bits). The lookup tables for the mapping between artificial 

genome and parameters were as follows. 
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Table 45. Lookup table linking the artificial genome to the Hidden Unit parameter, for 

the Narrow Genetic Variation condition 

 Hidden Unit Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 

Population 
probability 

0.06 0.25 0.38 0.25 0.06 

Parameter value 15 20 25 30 35 
 

Table 46. Lookup table linking the artificial genome to the Temperature parameter, for 

the Narrow Genetic Variation condition 

 Temperature Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 

Population 
probability 

0.02 0.09 0.23 0.31 0.23 0.09 0.02 

Parameter value 0.25 0.5 0.75 1 1.25 1.5 1.75 
 

Table 47. Lookup table linking the artificial genome to the Noise parameter, for the 

Narrow Genetic Variation condition 

 Temperature Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 

Population 
probability 

0.02 0.09 0.23 0.31 0.23 0.09 0.02 

Parameter value 0 0.05 0.1 0.2 0.25 0.5 0.75 
 

Table 48. Lookup table linking the artificial genome to the Learning Rate parameter, 

for the Narrow Genetic Variation condition 

 Learning Rate Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 

Population 
probability 

0.02 0.09 0.23 0.31 0.23 0.09 0.02 

Parameter value 0.05 0.075 0.1 0.125 0.15 0.175 0.2 
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Table 49. Lookup table linking the artificial genome to the Phonological Learning Rate 

parameter, for the Narrow Genetic Variation condition 

 Phonological Learning Rate Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 

Population 
probability 

0.02 0.09 0.23 0.31 0.23 0.11 - 

Parameter value 0.05 0.1 0.25 0.5 0.75 1 1 
 

Table 50. Lookup table linking the artificial genome to the Semantic Learning Rate 

parameter, for the Narrow Genetic Variation condition 

 Semantic Learning Rate Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 

Population 
probability 

0.063 0.625 - 0.250 0.063 

Parameter value 0.25 0.5 0.5 0.75 1 
 

Table 51. Lookup table linking the artificial genome to the Momentum parameter, for 

the Narrow Genetic Variation condition 

 Momentum Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 

Population 
probability 

0.0625 0.25 0.375 0.25 0.0625 

Parameter value 0 0.1 0.15 0.2 0.25 
 

Table 52. Lookup table linking the artificial genome to the Weight Variation 

parameter, for the Narrow Genetic Variation condition 

 Weight Variation Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 

Population 
probability 

0.02 0.09 0.23 0.31 0.23 0.09 0.02 

Parameter value 0.01 0.05 0.1 0.25 0.5 0.75 1 
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Table 53. Lookup table linking the artificial genome to the Architecture parameter, for 

the Narrow Genetic Variation condition. (0 = 2-layer, 1 = 3-layer, 2 = fully-connected) 

 Architecture Parameter Value 

Number of 1-
valued alleles 

0 1 2 

Population 
probability 

- 0.75 0.25 

Parameter value 1 1 2 
 

Table 54. Lookup table linking the artificial genome to the Learning Algorithm 

parameter, for the Narrow Genetic Variation condition. (0 = Euclidean distance error 

metric, 1 = cross-entropy error metric) 

 Learning Algorithm Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 

Population 
probability 

- - 1.00 - - 

Parameter value 1 1 1 1 1 
 

Table 55. Lookup table linking the artificial genome to the Nearest Neighbour 

Threshold parameter, for the Narrow Genetic Variation condition 

 Nearest Neighbour Threshold Parameter 

Value 

Number of 1-
valued alleles 

0 1 2 3 4 

Population 
probability 

0.06 0.25 0.38 0.25 0.06 

Parameter value 0.01 0.04 0.07 0.1 0.13 
 

Table 56. Lookup table linking the artificial genome to the Pruning Onset parameter, 

for the Narrow Genetic Variation condition 

 Pruning Onset Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 

Population 
probability 

0.06 0.25 0.38 0.25 0.06 



	   39	  

Parameter value 50 75 100 150 200 
 

Table 57. Lookup table linking the artificial genome to the Pruning Probability 

parameter, for the Narrow Genetic Variation condition 

 Pruning Probability Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 

Population 
probability 

0.02 0.09 0.23 0.31 0.23 0.09 0.02 

Parameter value 0.01 0.025 0.05 0.1 0.15 0.2 0.3 
 

Table 58. Lookup table linking the artificial genome to the Pruning Threshold 

parameter, for the Narrow Genetic Variation condition 

 Pruning Threshold Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 

Population 
probability 

0.02 0.09 0.23 0.31 0.23 0.09 0.02 

Parameter value 0.1 0.2 0.3 0.4 0.5 0.6 0.75 
 

Table 59. Lookup table linking the artificial genome to the Weight Decay parameter, 

for the Narrow Genetic Variation condition 

 Weight Decay Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 

Population 
probability 

0.02 0.09 0.23 0.55 - 0.11 - 

Parameter value 98.4x10-7	   19.7x10-7	   9.8x10-7	   1.0x10-7	   1.0x10-7	   0 0 
 

Table 60. Lookup table linking the artificial genome to the Sparseness parameter, for 

the Narrow Genetic Variation condition 

 Sparseness Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 

Population 
probability 

0.063 0.250 0.375 0.250 0.063 

Parameter value 0 0.05 0.1 0.15 0.2 
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3. A note on the artificial genome 

One can view the artificial genome simply as a method to generate a population with 

variability in the learning abilities of individual, while providing the basis to encode 

the similarity between siblings of different types (MZ or DZ twins). In terms of a 

model of the actual relation between levels of description, the artificial genome is 

clearly remote from real cellular function. 

Nevertheless, it is worth noting that the relation of genotype to neural substrate 

respects several distinct genetic contributions. The parameters corresponded not only 

to how the network was built (e.g., number of layers, internal units, and connections) 

but also how it ran (processing noise, threshold functions), how it was maintained 

(weight decay and pruning), and how it adapted (learning rate, momentum). Some of 

these parameters can be seen as analogous to genetic effects on brain development 

operating early on and not thereafter (e.g., neurogenesis, neural migration), while 

others can be seen as analogous to on-going gene expression in the maintenance of 

function (neural dynamics) and adaptive processes (plasticity, pruning, decay). The 

artificial genome does not represent a design blueprint but stipulates many aspects of 

ongoing functioning. 

 

4. A note on additivity 

The action of genes on the artificial genome was intended to be additive. No dominant 

effects or interactions between genes were implemented. Nevertheless, our use of 

lookup tables to map between the multiple genes influencing a given 

neurocomputational parameter and the value of that parameter turned out to 

inadvertently implement non-additive effects. Recall, the lookup table for each 
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parameter summed the number of 1-valued gene variants amongst the set of artificial 

genes influencing each parameter and retrieved the associated parameter value. 

However, the function linking the number of 1-valued variants with the parameter 

value was not necessarily linear, nor necessarily symmetrical around the ‘normal’ or 

‘average’ value of the parameter (see Figure 3). The reason for this was that during 

calibration, we had attempted to make poorer and better behavioural outcome roughly 

symmetrical around average performance for each parameter. This required that the 

change in parameter value be sometimes non-linear. For example, a few less hidden 

units below average could cause performance to drop off quickly, but many more 

hidden units above average were required to give an equivalent performance gain. 

However, the consequence of this assumption was that the effect on the final parameter 

value of adding one extra 1-valued variant to the sum could differ, depending on 

whether there were many other 1-valued or few other 1-valued variants amongst the 

group. No dominant or interactive effects were encoded, in the sense that the artificial 

genes for a parameter were interchangeable in their effects. Nevertheless, the 

consequence of designing in behavioural symmetry was that strict additivity did not 

hold in the way gene variants combined. We ran further populations ensuring linearity 

in the mapping between artificial genes and parameters. The results of these 

simulations have not yet been reported. 
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