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Evolving Connectionist Models to Capture Population 

Variability Across Language Development: Modelling 

Children’s Past Tense Formation 

 

Abstract 

Children’s acquisition of English past tense has been widely studied as testing ground for theories of 

language development, mostly because it comprises a set of quasi-regular mappings. English verbs 

are of two types: regular verbs, which form their past tense based on a productive rule, and irregular 

verbs, which form their past tenses through exceptions to that rule. Although many connectionist 

models exist for capturing language development, few consider individual differences. In this paper, 

we explore the use of populations of Artificial Neural Networks (ANNs) that evolve according to 

Behavioural Genetics principles in order to create computational models capable of capturing the 

population variability exhibited by children in acquiring English past tense verbs. Literature in the 

field of Behavioural Genetics views variability in children’s learning in terms of genetic and 

environmental influences. In our model, the effects of genetic influences are simulated through 

variations in parameters controlling computational properties of ANNs, and the effects of 

environmental influences are simulated via a filter applied to the training set. This filter alters the 

quality of information available to the artificial learning system and creates a unique subsample of 

the training set for each simulated individual. Our approach uses a population of twins to disentangle 

genetic and environmental influences on past tense performance and to capture the wide range of 

variability exhibited by children as they learn English past tenses. We use a novel technique to create 

the population of ANN-twins based on the biological processes of meiosis and fertilisation. This 

approach allows modelling of both individual differences and development (within the lifespan of an 

individual) in a single framework. Finally, our approach permits the application of selection on 

developmental performance on the quasi-regular task across generations. Setting individual 

differences within an evolutionary framework is an important and novel contribution of our work. 

We present an experimental evaluation of this model focusing on individual differences in 

performance. The experiments led to several novel findings including: divergence of population 

attributes during selection to favour regular verbs, irregular verbs, or both; evidence of canalisation, 

analogous to Waddington’s developmental epigenetic landscape, once selection starts targeting a 

particular aspect of task domain; and limiting effect on the power of selection in the face of 

stochastic selection (roulette wheel), sexual reproduction, and a variable learning environment for 

each individual.  Most notably, the heritability of traits showed an inverse relationship to 

optimisation. Selected traits show lower heritability as the genetic variance of the population 

reduces. The simulations demonstrate the viability of linking concepts such as heritability of 

individual differences, cognitive development, and selection over generations within a single 

computational framework. 
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1. Introduction 

 
In artificial life systems, interactions between evolution and learning have attracted 

considerable attention in the literature, and several computational models have been proposed 

to investigate the way evolution affects learning. In this work, we focus on language learning, 

an area where computational models have made several contributions towards a better 

understanding of language development and evolution [15, 28, 43]. 

Language learning is considered one of the most complex tasks. Nevertheless, most children 

acquire it naturally, effortlessly, and quickly compared to other areas of cognitive 

development. Language is like the majority of complex systems which exist in nature and 

which empirically exhibit hierarchical structure [42].  

Two opposing theories of language acquisition dominate the linguistic and psycholinguistic 

communities (refer to [55] for a review). The nativist approach, proposed by Chomsky [5,6], 

and promoted by Pinker, claims that the linguistic capability at least with respect to grammar 

is innate; therefore, certain linguistic universals are inherited by language learners, encoded 

in the genome by some prior process of evolutionary selection; only the established 

parameters need little tweaking in order for language to be fully acquired [30]. 

The second view is the emergentist approach. It asserts that language emerges as a result of 

various challenging constraints, which are all consistent with other general cognitive abilities. 

No dedicated provisions for universal grammar are required. According to this view, the 

complexity of language emerges from the exposure of relatively simple developmental 

processes to a massive and complex environment [24, 25]. 

Computational models provide an insight into language acquisition processes and the nativist 

versus emergentist debate. Artificial neural networks or connectionist networks offer an 

intuitive framework in which empirical phenomena in language acquisition can be explained 

by virtue of interactions between a language-learning system that incorporates general 



 

properties of computations in the brain and statistical properties of the linguistic environment 

to which it has been exposed [17]. Computational models have been extensively applied to 

investigate the mechanisms of language development, including simulating early 

phonological development, lexical segmentation, vocabulary development, the acquisition of 

pronouns, the development of inflectional morphology, syntax comprehension, syntax 

production, metaphor comprehension, and reading [50]; (for reviews, see [4]; [26]). 

One particular focus of research has been the field of inflectional morphology, which 

considers the alteration of the phonological forms of words to change their meaning (such as 

tense for verbs and number for nouns). Within this field, the acquisition of English past tense 

has drawn a great deal of attention, under the assumption that it taps the main cognitive 

processes involved in the acquisition and use of morphological knowledge [17]. Children’s 

acquisition of English past tense has been the focus of great deal of empirical research, 

mostly due to its quasi-regular mappings [50]. 

Quasi-regular domains are interesting because of the presence of systematic input-output 

mappings but the presence of a minority of exceptions [50]. The majority of English verbs, 

viz. regular, form their past tense by following a rule for stem suffixation, also referred to as 

+ed rule. This rule allows for three possible phonological suffixes [18] - /d/ e.g. raise – 

raised; /t/ e.g. clap – clapped; /ed/ e.g. visit – visited. The rule is applied productively to novel 

forms, e.g., wug – wugged. However, there are around 200 irregular verbs that form their past 

tenses by exceptions to the aforementioned rule, e.g. go – went; eat – ate; ring – rang, hit – 

hit. Although irregular verbs do not follow the productive rule, there are some irregular verbs 

that share characteristics of the regular verbs. For instance, many irregular verbs have regular 

endings, /d/ or /t/ but with either a reduction of the vowel, e.g. say – said; do – did, or the 

deletion of a stem consonant, e.g., has – had; make – made [23]. This overlap between 

regular and irregular verbs adds to the complexity of task domain. (See the mapping between 



 

written and spoken forms of English for another example of a quasi-regular domain within 

language, [33]). 

Due to this dual and fuzzy nature, there is an ongoing debate in the field of language 

development about the processing structures necessary to acquire the domain, and whether it 

has a duality to reflect the structure of the problem space (refer to [51] for a review). Is it 

necessary for the system to contain a prior processing assumption that the domain includes a 

productive rule, requiring symbolic computational structures? If so, how are the exception 

cases accommodated? Or can productivity emerge from undifferentiated associative 

mechanisms exposed to quasi-regular domains? 

There are two main theories. The first is a dual-route account, proposed by Pinker [29], 

according to which two separate mechanisms are involved in learning the mappings: a rule-

based system for learning regular mappings, and a rote-memory system, which supports the 

irregular mappings. Rumelhart and McClelland [41] challenged this dual-mode model by 

proposing a model based on the principles of parallel distributed processing. Their alternative 

model demonstrated that a two-layered feed-forward neural network could learn mappings 

between phonological representations of verbs and their corresponding past tense forms. Both 

regular and irregular, as well as demonstrating productivity of the rule to novel verbs. This 

model, though extremely influential, had several drawbacks (refer to [18], for details).  

The model was based on the Backpropagation algorithm and inspired many subsequent 

connectionist models of acquisition of inflections like [8, 10, 38, 39] to name a few. 

Subsequent connectionist models addressed many of the drawbacks of the initial model. For 

example, Plunkett and Marchman [39] took the main idea from Rumelhart model and 

modified it into three-layered feed-forward architecture with more realistic phonological 

representations. 



 

The line of research inspired by Rumelhart and McClelland employed artificial neural 

networks to simulate a wide range of past-tense acquisition related phenomena. However, the 

majority of this work was concerned with capturing the developmental profile of the average 

child. Recently artificial neural network models have been extended to explore causal factors 

of atypical development, for example, in the cases of Developmental Language Disorder and 

Williams syndrome [19]. To our knowledge, very little work has been concerned with 

capturing the wide range of variability that typically developing children exhibit in acquiring 

this aspect of language. Thomas, Forrester and Ronald [50] modelled the effects of socio-

economic status (SES) on language development, combining development and individual 

differences in a single framework. The key innovation of this model was that it addressed 

individual differences arising from variations in SES of the families in which children are 

raised. Such variation was simulated as a modulation of language environment with which 

children interact, but importantly, captured against a background of variation in the 

computational power of each individual’s language-learning systems. 

Recently, two innovations in this line of research have raised interesting questions of 

relevance to research in artificial life and evolutionary computation. The first innovation is 

the application of past tense modelling to individual differences between children with 

respect to their origin in genetic and environmental factors. For example, to some extent 

language delay runs in families, implying a heritable component, while differences in SES – a 

proxy measure of the quality of the environment – also explain some of the variance in 

language development [50]. The second innovation is the use of multi-scale modelling to 

reconcile data from multiple levels of description, including genetic, neural structure, 

cognitive processes, behaviour, and the environment. The operation of genetic factors on 

behaviour is captured as the outcome of an extended development process involving 

interaction with a structured learning environment. This framework, using past tense as an 



 

illustrative cognitive domain, has for example explored the relationship of statistical gene-

behaviour associations (as reported in Genome Wide Association Studies) to developmental 

mechanisms. The specification of a genetic level in the model allows simulation of identical 

and fraternal twins, thereby simulating the kinds of twin study designs used to assess the 

heritability of high-level behaviour [48].  

Genetic algorithms were initially proposed to simulate biological evolution and in that 

context they have found several applications in artificial life. However, they quickly gained 

prominence as global search methods and have been extensively applied for optimisation, 

where selection across generations aims to improve the performance of learning systems on a 

target task. By contrast, the existing multi-scale models take the presence of genetic variation 

as a starting point. This raises the following questions: where does the existing genetic 

variation in populations come from? How does this variation respond to the operation of 

selection? How do measures of heritability alter across generation through the operation of 

selection? What are the implications of using a quasi-regular domain as the target problem for 

optimisation? What parts of the problem domain are optimised across generations and what 

factors determine this? The relationship between learning and genetic inheritance is a crucial 

concern in the study of artificial life [27, 28]. 

To address these questions, in this work, we build on our previous investigation that 

combined concepts of Behavioural Genetics with the idea of parametrically diverse 

populations of learning systems, where genes (representing intrinsic factors) and environment 

(expressed via training datasets) interact throughout development to shape differences in 

individual classifier behaviours [22]. We extend the framework to an evolutionary context by 

introducing selection in the populations’ optimisation process across generations, focusing on 

learning a particular task: English past tense. The use of selection on performance in a quasi-

regular task and the resulting findings make our English past tense acquisition model novel 



 

and different from others proposed in literature. In this context, we present our synergistic 

approach to capture population variability stemming from genetic and environmental 

influences and to analyse effects of selection on behavioural outcomes.  

This approach not only captures the heterogeneity observed in acquiring a new ability but 

also helps in understanding how the quality of environment interacts with intrinsic 

constraints, leading to an individual’s overt behaviour. It shows, for example, the different 

behaviours emerging due to interaction of quality of training set with good (or poor) learning 

rate (i.e., ability to learn, similar to neuroplasticity) and good (or poor) numbers of hidden 

units (i.e., capacity to learn, somewhat similar to neurogenesis). It also highlights how 

applying selection results in changes in overt behaviour across generations. 

In Behavioural Genetics, factors affecting language development are attributed to genetic and 

environmental influences [20]. To model genetic influences, we encode variation in neuro-

computational parameters of ANNs that modulates overall learning efficiency. These 

parameters relate to how a network (individual) is built (the number of hidden units), its 

processing dynamics (slope of logistic function within processing units), and how it adapts 

(learning rate). The effects of environmental influences are simulated via a filter applied to 

the training set. This filter alters the quality of information available to the learning system. 

One factor identified to correlate with variations in language and cognitive development is 

SES, in terms of parent income and education levels. Although this measure is a proxy for the 

potentially multiple causal pathways by which environmental variation influences 

development, one line of evidence supports the view that SES modulates levels of cognitive 

stimulation: children in lower SES families experience substantially less language input and 

also a narrower variety of words and sentence structures [50]. When implemented as a filter, 

the result is the creation of a unique subsample of the training set for each simulated 

individual, based on their SES. 



 

Although intrinsic and extrinsic parameters vary independently in this formulation, gene-

environment interactions can occur. According to principles of Behavioural Genetics, both 

genes (intrinsic factors) and environment (training datasets) interact throughout development 

to shape differences in individual behaviours (performance) [37]. Here, connectionist 

networks contain a range of parameters that can increase or decrease the ability and/or 

capacity of the network to acquire a new ability but the structure, or the quality, of the 

environment affects the way these intrinsic parameters behave. For example, within a 

modelling context, a certain number of ANN hidden units may be highly beneficial for a 

specific condition of the environment (say number of training examples available) but if these 

conditions were to change drastically (say, a large expansion of the training set), the same 

number of hidden units may not be able to accommodate the change. Thus, the system’s 

performance will alter. 

Apart from having genetic and environmental variation, our model also incorporates 

“selection” and its effects. As is shown later in the paper, applying selection on performance 

on the English past tense problem leads to two novel findings: (i) selection can stochastically 

target different aspects of a quasi-regular task depending on different initial conditions, 

potentially producing divergent populations. This in turn results in emergence of different 

and varied behavioural (performance) patterns, while still optimising on the target task; (ii) 

the amount of performance variation explained by genetic similarity, the so-called heritability 

metric [20] plays an important role in identifying which aspect of this quasi-regular task is 

being targeted by selection. 

The rest of the paper is organised as follows. First, we give an overview of the proposed 

hybrid computational model, combining neural networks and evolution, and its inspiration in 

Behavioural Genetics. We then explain the methodology for the implementation of the model 



 

and the past tense dataset used in the simulations. Finally, we present the results and discuss 

their implication. 

 

2. Behavioural Genetics Inspired Hybrid Computational Model 

 

Behavioural Genetics (BG) is a field of study that examines the role of genetics in individual 

differences in human behaviour. Behaviour is the most complex phenotype as it reflects the 

functioning of the complete organism; it is dynamic and changes in response to the 

environment [35]. This field is concerned with the study of individual differences, i.e. 

knowing what factors make individuals within a group differ from one another. It also 

estimates the importance of genetic and environmental factors that cause individual 

differences. Thus, the behaviour or phenotype is the result of genetic factors together with 

environmental factors. 

Twin-studies are the workhorse for behavioural genetic research. The twin design provides a 

quasi-experimental scenario triggered to measure respective contributions of nature and 

nurture to individual differences [20]. Twins are matched for age, family and other social 

influences. They are either genetically identical (genetic relatedness of 1.0 for monozygotic, 

MZ, or identical twins) or as similar as siblings (genetic relatedness of 0.5 for dizygotic, DZ, 

or fraternal twins) and, to an approximation, share the same environment (applicable for both 

MZ and DZ twins based on the Equal Environments Assumption) [37]. The difference in the 

similarity in performance between MZ or DZ twin pairs, along with assumptions about their 

similarity of environment, allows inferences to be drawn about the influence of genetic 

relatedness on behaviour [36]. If MZ twins are more similar in a trait than DZ twins – and the 

environment plays an equivalent role in making each pair similar – then the greater similarity 

of MZ twins must stem from their greater genetic similarity.  

The extent to which greater genetic similarity predicts greater trait similarity can be used to 

derive a measure of heritability [12]. Formally, the heritability statistic is defined as the 



 

proportion of observed or phenotypic variance that can be explained by genetic variance [20]. 

There has been increasing acceptance that in humans, many high-level behaviours show 

marked heritability [20], a finding that would have been surprising to many researchers in the 

latter part of the 20
th

 Century. For our purposes, the measure of heritability derived from the 

twin method is useful because it is a single metric derived from performance that scales 

however large the number of parameters by which the heritable influence is delivered in the 

underlying mechanism. Thousands of gene variants may influence thousands of parameters 

which combine in complex ways to shape behaviour, but by measuring trait similarity in 

twins, a single measure of genetic influence is available.   

In twin designs, environmental influences are defined as being of two types, shared (or 

between-family) and non-shared (or unique and within-family). Shared, or between-family 

environmental influences are those that serve to make members of a family similar to each 

other and different from members of other families. Shared environmental influences include 

family structure, socioeconomic status, and parental education to name a few [34]. By 

contrast, non-shared, or within-family environmental influences are factors that serve to make 

individuals different from one another. These environmental influences do not operate on a 

family-by-family basis but rather on an individual-by-individual basis. Examples include peer 

groups, perinatal traumas, and parental treatment [34, 37]. Measurement error in twin designs 

also contributes to the non-shared environment. 

To measure heritability and the proportions of variance explained by shared and non-shared 

environments, we use a technique based on Falconer’s equations [12] as described in [22]. 

Linear algebra is used to derive estimates of heritability. Broadly, since DZ twins are half as 

genetically similar (on average) as MZ twins, the difference in the correlation (Pearson’s 

formula) between MZ and DZ twins shows about half the genetic influence on behaviour; 



 

doubling the difference in correlations between MZ and DZ twins gives an estimate of 

heritability. 

Our base model, prior to implementing sources of variation and the use of twins, was inspired 

by that proposed by Plunkett and Marchman [39]. They suggested that both the regular and 

the exception verbs could be acquired by an otherwise undifferentiated three-layer 

Backpropagation network, trained to associate representations of the phonological form of 

each verb stem to a similar representation of its past tense. This became our base model; we 

introduced the sources of variations, relying on the Rprop algorithm [40] for training; and 

then introduced selection across generations of twin pairs. Table 1 provides a high-level 

description of the BG inspired past-tense model and each step in the table is discussed in 

sections below [21]. 

 

1. Simulate variations in genetic influences  

 Encode neurocomputational parameters into genome 

 Calibrate range of variation of each of these parameters 

2. Simulate variations in environmental influences 

 Apply SES-based filter to dataset to generate unique training subset  for each twin pair   

3. Generate initial population of ANN twins,      such that each individual is an ANN 

characterised by its own genetic and environmental influences. Set       

4. REPEAT 

(a) Train each individual (ANN twin) using some local search mechanism 

(b) Evaluate Fitness of each individual ANN according to training performance result for 

regular verbs, irregular verbs and combined performance. Also calculate heritability by 

comparing similarity of identical and fraternal twin pairs 

(c) Select parents from      based on their fitness on combined (overall) performance 

(d) Apply search operators to parents to produce offspring which form        

5. UNTIL, termination criterion is met 

 

Table 1: High-level description of BG-inspired English past-tense model 

 

Simulating variations due to genetic influences: Artificial neural networks depend on a 

range of parameters that increase or decrease their ability to acquire a new task. In the current 

instantiation, our approach employed three free parameters to constrain the learning abilities 

of ANNs, which were assumed to be under genetic influence. The first two parameters, 



 

number of hidden units and the learning rate (or the initial learning rate of Rprop) have been 

used in almost all applications involving ANNs. These are formational parameters, since the 

former corresponds to how the network is built and thus relates to a network’s capacity to 

learn, whereas the latter governs how networks adapt and hence provides a network with the 

ability to learn. These parameters would thus be influential in distinguishing between fast and 

slow learners. 

We also used another parameter, the slope, or steepness, of the logistic threshold function 

within the artificial neurons. This corresponds to the activation dynamics acting within each 

network. Modulation of this parameter leads to steeper or shallower slopes in the threshold 

function. A shallow slope negates the opportunity of a processing unit to make large output 

changes in response to small changes in input; a steep slope ultimately leads to very sensitive 

but binary response characteristics subject to entrenchment effects. Therefore, too shallow or 

too steep values of this parameter will hinder the learning process [31, 49]. 

In order to constrain learning, these properties were encoded into a genome. The genome was 

the measure of the base composition of an individual. In other words, it served as a set of 

instructions about how to form an organism of a particular species or group. Encoding 

parameters in the genome allowed the individuals in a population to have a different 

genotype, that is, different values of each of the free parameters but from within the same 

fixed range. It thus led to variability in a population by giving each network a different 

ability/capacity to learn new tasks. As described in the next section, the artificial genome was 

comprised of binary genes, where the values of several genes were used to determine the 

value of each parameter, a scheme called polygenic coding [48]. 

Simulating variations due to environmental influences: Variations in shared environmental 

influences were simulated through variations in the Environmental Factor (EF), which 

implemented the kind of variation in the richness of language environment associated with 



 

differences in the SES of the families in which children are raised. SES effects can be 

implemented in three main ways: by manipulating the quality and quantity of the information 

available, by altering the motivation of the learner to utilise the available information through 

differences in reward and punishment schedules, or by manipulating the computational 

properties of learning systems (as, for instance, differences in stress levels or diet might 

influence brain processes in children) [50]. 

For this work, we focus on EF as a manipulation of the quality and quantity of information 

available to the learners. We assumed that, in principle, there is a perfect environment, or full 

training set, available to any learner. This comprised all of the verbs available in the language 

and their accepted past tense forms. We then modelled an individual’s EF by a number 

selected at random from the range 0.6–1.0. This gives a probability that any given verb in the 

full training set would be included in that individual’s training set. The range 0.6-1.0 defines 

the range of variation of EF in the population, and ensures that all individuals are exposed to 

more than half of the past tense domain. Twin pairs raised in the same family were exposed 

to the same training set, such that EF would lead to effects of shared environment. The 

variance in performance that cannot be inferred from shared environment is representative of 

effects of unique or non-shared environmental influences. In the absence of measurement 

error (because none was added), unique environment effects arose due stochastic factors such 

as the initial weights of ANNs or the random order of presentation of training items. 

The learning speed and fast convergence of many feedforward neural networks depend to 

some extent on their initial values of weights and biases [45, 56]. For this reason, in our 

approach, initial values of weights were one way to capture unique environments. The 

initialisation method used in this work is similar to that proposed by [3] and uses the interval:  

[− 
 

    
  

 

    
  wherein   is chosen in a way that weight variance corresponds to the points 

of maximum curvature of activation function. This value is 2.38 for standard sigmoid 



 

function [45]; and din is fan-in of neuron or the total number of inputs of a neuron in the 

network. 

 

3. Model Implementation Methodology to Capture Individual Differences 

 

Using the concepts explained in the previous sections, we built a model to learn English past 

tenses and also capture individual differences in performance. The starting point of this work 

was to estimate the proportion of variance attributed by variances in structural parameters 

(genes), training set (shared environment), and initial weights (non-shared environment). The 

methodology adopted can be summarised as follows:  

Design ANNs: the first step was to design ANNs incorporating neuro-computational 

parameters that constrained their ability to learn. We selected three free parameters, each of 

which corresponded to how the network is built: number of hidden units; the slope of logistic 

activation function; and how it adapts, the initial learning rate of Rprop. 

Calibrate range of variation: in the second step, the range of variation of each of these 

parameters was calibrated to avoid the presence of genes in the population that produced 

networks with no learning ability. This established the range of variation in the population 

prior to the operation of selection. To this end, we began with random values for all 

parameters and trained 100 neural networks for 1000 epochs while varying the values, in 

steps of 5 for hidden units and 0.01 otherwise, for each of these parameters individually. The 

calibration process was carried out for all parameters, until values were identified beyond 

which the learning failed (less than 20% accuracy – lower bound), as well as the values 

which resulted in successful learning (80% accuracy or more – upper bound for range). This 

method provided a range of parameter values from poor up to very good performance. These 

values were then encoded in the artificial genome. Encoding the parameters within a fixed 

range allowed variation in the genome between members of population, which then produced 

variations in computational properties. The range of variation of the parameter values served 



 

as the upper and the lower bound used for converting the genotype (encoded values) into its 

corresponding phenotype (real values). For the encoding, we used binary representation, 

whereby each gene had two variants or alleles, with 10 bits per parameter, split into two 

chromosomes. Paired chromosomes allowed sexual reproduction to be simulated. In turn, this 

permitted networks to be generated with different degrees of relatedness, either MZ or DZ 

twins, and enabled utilisation of the twin design to estimate heritability. The parameters and 

their range of variation are given in Table 2. 

 
Parameters Range of variation 

No of hidden units 10 - 500 

 Initial Learning rate 0.07 - 0.1 

Slope of logistic 0.0625 - 4.0 

 

Table 2: Genome representing ANN parameters and their ranges 

 
 

The genotype-phenotype mapping was implemented as follows: this step involved decoding 

the binary representation of the population into vectors of real-values. The genotypes are the 

concatenated binary strings of given length and are decoded into real valued phenotypes over 

a specified interval using standard binary coding [54]. There are number of ways in which 

binary to real conversions can be done, in this work we make use of Matlab genetic 

Algorithm Toolbox (http://codem.group.shef.ac.uk/index.php/ga-toolbox) library function 

called       which has a decoding matrix. This matrix has the following parameters to 

accomplish this binary to real conversion – length of each binary string (   ); lower and 

upper bounds for each encoded gene (neuro-computational parameter) (   and   ); type of 

encoding –binary or grey (    ); type of scaling to be used for each string – arithmetic or 

logarithmic (     ); and finally whether or not to include the lower and/or upper bound in the 

representation range (     and     ). 



 

Breed the population: the next step concerned creating the population of ANN twins using 

the genome. We simulated the biological processes of meiosis and fertilisation to create 50 

pairs of MZ and 50 pairs of DZ twins (refer to [7] for details about biological meiosis and 

fertilisation). Table 3 presents the algorithm used for creating population of ANN twins. 

 

1. Generate initial population      of   members at random 

2. Split the population members into two groups of size 
 

 
 representing fathers and mothers 

3. REPEAT 
(a) For each parent, split genome into two equal halves resulting in two chromosomes 

per individual such that each chromosome carries half the information for each 
encoded parameter 

(b) Apply crossover m times on each chromosome pair, every crossover resulting in 
either two sperms or two eggs 

(c) Combine the sperms and eggs using positional recombination such that half of the 
encoded genetic information comes from sperm and other half from egg resulting    
possible offspring 

(d) Verify the genetic similarity between twin pairs and accordingly choose MZ and DZ 
twins pairs, picking only one offspring per crossover 

4. UNTIL population of desired size   is obtained 

 

Table 3: Meiosis and fertilisation based method for creating population of ANN twins 

 

 

We began this process by creating a population of n members with random binary genomes. 

These n members were then split into two groups of size n/2, representing fathers and 

mothers. Next, the genome of each individual was split into two equal halves, resulting in two 

chromosomes per individual. Each chromosome contained half the information to code for 

each parameter. Crossover was applied m times on these chromosomes. Each crossover 

resulted in two sperms or eggs. Sperms and eggs were then combined to create offspring 

employing positional recombination, such that for each parameter, half the encoded 

information came from sperm and other half from egg. Thus, every crossover and fertilisation 

led to 2 offspring, resulting in total 2m possible offspring. Mutation was not performed for 

simplicity. The mutation rate is extremely low in humans and mutation tends to reduce the 

average genetic similarity between siblings below 50%, violating the assumptions of the twin 



 

design. The offspring genotypes were converted to phenotypes using the parameter values 

given in Table 2. 

Although in biology, meiosis creates two sperm/two eggs from the crossover operation, the 

likelihood of both of the pair ending up in organisms is very small. If this happened, the mean 

genetic similarity of the population would start to be affected. We therefore only selected one 

of the pair of sperm/eggs generated by the crossover to generate offspring, while the other 

was discarded. 

To verify the genetic similarity between twin pairs, we used the Hamming distance metric to 

assess the similarity amongst offspring. Let us assume that 2m = 6, and crossover is applied 

three times, leading to: xover1 results in offspring (o1, o2); xover2 results in (o3, o4) and 

xover3 leads to offspring (o5, o6). First, we randomly pick any one offspring out of the 

possible six; let us assume that is o1. Because of the reasons explained above, we discard 

o1’s corresponding offspring, o2. Next, the similarity of o1 is checked with the remaining 

four offspring using the Hamming distance formula. The offspring that is at most 50% similar 

is chosen as o1’s corresponding DZ twin, assume o4. This implies that (o1, o4) form a pair of 

DZ twins. Subsequent to o4’s selection, its corresponding twin from crossover, o3 is 

discarded. Now, out of the remaining two twins, any one is chosen randomly and replicated, 

and they comprise the MZ twin pair.   

This process was repeated until we achieved the desired population size. When simulating 

multiple generations, the internal similarity of the gene pool should not be increased by 

inbreeding. If related individuals were to breed with each other, the average similarity 

between individuals would increase over the generations. For this reason, we separated twin 

pairs into breeding and non-breeding populations, and only bred from the breeding twin of 

each pair, while the non-breeding twin was available to compute heritability. Breeding 



 

therefore always took place between unrelated individuals, preserving the mean genetic 

similarity within populations across generations. 

Apply variation in the environment: an individual’s EF was modelled by a randomly chosen 

number between 0.6-1.0. This gave a probability that any given pattern in the full training set 

was included in that individual’s training set. This filter was applied at each generation to 

create unique training subsets for all members of the population in that generation. The range 

0.6-1.0 defined the range of variation of environmental quality, and ensured that all 

individuals were exposed to more than half of the training dataset. In accord with the Equal 

Environments Assumption [36], twin pairs raised in the same family were assigned the same 

training subset. 

ANN training and performance assessment: the population of twin ANNs was trained on the 

past-tense data set using the Rprop algorithm [1, 40]. Rprop is a training algorithm  for 

supervised learning in feed forward neural networks. It takes into account only the sign of the 

partial derivative over all patterns and maintains a separate learning rate for each weight that 

is adapted during training. It is a superior algorithm in terms of convergence speed, accuracy 

as well as robustness with respect to the training parameters and therefore is a very popular 

choice for the training of multilayer feed-forward neural networks in various applications and 

is included in several packages, e.g. R and Matlab. Rprop works as follows: every time, t, the 

partial derivative of the error E with respect to a weight 
)(t

ijw  changes its sign, which indicates 

that the last weight update was too big and the algorithm has jumped over the local minimum, 

the update-value )(tij   is decreased by multiplying with a user defined factor   . If the 

derivative retains its sign, the update value is slightly increased by multiplying with a factor 

 in order to accelerate convergence in shallow regions. Additionally, in case of a change in 

sign, there should be no adaptation in the succeeding learning step. In practice this can be 



 

achieved by setting the derivative )1( 



t

w

E

ij

 = 0 in the adaptation rule, which leads no 

update. Lastly, the update-values are calculated and all the weights are updated after the 

gradient information of the whole pattern set is computed. For a detailed explanation of the 

Rprop algorithm and of its variants, the reader is referred to section 2 of Anastasiadis et al. 

[1] and to [40].  

In this work, the performance was assessed on the full training set, as well as, on another 

novel dataset that was created to test the generalisation ability of the networks (see below). 

The continuous outputs produced by networks were converted to binary by applying a 

threshold. Then the performance was assessed using recognition accuracy based on Hamming 

distance as explained below in Table 4. 

 

Input: Actual output of network,    

Desired output,    

Output: Performance accuracy,   

Variables:    total number of patterns in    

   total number of patterns in    

    a pattern in   , where       

    a pattern in   , where       

      Hamming distance between phonemes of    and    

       Hamming distance between allomorphs (or the last 5 bits) of    and    

                

1. initialise                           

2. for                       Repeat 

3.      Split    into three phonemes and allomorph 

4.      for                   do 

5.           Split    into three phonemes and allomorph 

6.           Calculate       between corresponding phonemes of     and    



 

7.           If                         (for all three phonemes) do 

8.                Calculate        between respective allomorphs 

9.                If          , do 

10.                                    

11.                                 ; 

12.                      Break; 

13.                Else 

14.                                  

15.                end 

16.           end 

17.      end 

18.      If                         do 

19.                       

20.      end 

21. end 

22.    
    

 
        

23.    Return   

Table 4: Recognition accuracy based performance calculation algorithm 

 

Selection: based on the performance of the networks on the full training set, members were 

selected from the breeding population to produce offspring to populate the next generation. 

To this end, a stochastic selection metric, the standard roulette wheel, was applied at the end 

of training (1000 epochs) [for details about roulette wheel selection refer - 

http://www.edc.ncl.ac.uk/highlight/rhjanuary2007g02.php]. An important and novel aspect of 

our approach for the past-tense acquisition problem was the combination of the roulette 

wheel method with the sexual reproduction method. The selected members entered the 

breeding pool and then bred with a randomly chosen member from that pool. After selection, 

only the offspring form the next generation of the population – parents (or members of 

previous/breeding population) were discarded. Despite the use of sexual reproduction, we did 

not include gender effects in the method or its outcomes. 



 

As a result of sexual reproduction, the best properties of parents did not always get 

transferred to offspring. This is for two reasons: (i) an individual (parent) can only pass one 

copy of each gene to its offspring. Therefore, there is an equal chance that either a maternally 

inherited gene or a paternally inherited gene will get transmitted to the offspring [20]. Since, 

after selection for the breeding pool, the members breed randomly, the best properties do not 

always get transferred effectively, since the advantageous gene may not be inherited. (ii) 

Inherited traits must combine with environmental conditions during the offspring’s 

development to produce its behavioural phenotype. Inheritance of strong learning abilities 

may not be associated with good performance if the offspring is exposed to an impoverished 

learning environment. It is the combination of inherited liabilities and environmental 

conditions that make each individual unique [16]. 

Repeat: the entire process was iterated until ANN parameters did not markedly change across 

generations or performance started to converge, i.e. the learning error reached a small value. 

 

4. English Past Tense Dataset 

 

The dataset was based on the “phone” vocabulary from Plunkett and Marchman [39] past 

tense model. The past tense domain was modelled by an artificial language created to capture 

many of the important aspects of the English language, while retaining greater experimental 

control over the similarity structure of the domain [39]. Artificial verbs were monosyllabic 

phoneme strings that followed one of the three templates – CCV, VCC and CVC, wherein C is a 

consonant and V is a vowel. There were 508 verbs in the dataset. Each verb had three 

phonemes – initial, middle, and final. The phonemes were represented over 19 articulation 

binary features encoding English phonology e.g. voicing, tongue position, closed or open lips 

[14]. A network thus had 3×19 = 57 input units and 3×19 + 5 = 62 units at the output. The 

extra five units in the output layer were used for representing the affix for regular verbs in 



 

binary format. As an example, consider the word bag and its past tense bagged. It would be 

represented as: first phoneme /b/ 0100111000000000000; second phoneme /ae/ 

1011101000001001000; and the third phoneme /g/ 0100100010000000000. So, the 

word bag becomes: 

0100111000000000000  1011101000001001000 0100100010000000000.  

Its past tense, bagged is made by adding an extra 5 bit suffix to the original verb. The suffix, 

/ed/ in our example, is represented as 00101. A detailed schematic of the phonological 

coding scheme can be found in Thomas (2018), Figure3, available here: 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6075940/figure/f0015/ [46].  

In the training dataset, there were 410 regular and 98 irregular verbs. Regular verbs followed 

the add –ed rule, with three different phonetic versions of the –ed inflection, /ed/, /d/, and 

/t/. There were three types of irregular verbs, vowel change, no change, and arbitrary. In 

the dataset, out of 410 regulars, there were 271 /ed/ verbs, 90 /d/ verbs, 49 /t/ verbs. As 

this was an imbalanced dataset, generating a classifier was challenging as the classifiers tend 

to map/label every pattern with the majority class. 

A second dataset was also created to assess the generalisation performance of the model. It 

measured the degree to which an ANN could reproduce in the output layer properly inflected 

novel items presented in the input, according to the regular rule. The generalisation set 

comprised 410 novel verbs, each of which shared two phonemes with one of the regular verbs 

in the training set, for example wug – wugged [18, 47]. Three different degrees of similarity 

were used to create generalisation dataset. In the first case, the first phoneme of the training 

set verb stem was changed. In the second case, the first two phonemes of verb stems were 

changed. Both of these changes were however consistent with phonotactics, i.e. a C was 

replaced by another C and a V by another V. In the third case, however, the first two 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6075940/figure/f0015/


 

phonemes were changed such that the conformity to phonotactics was violated. This use of 

novel verbs is standard practice for generalisation testing in context of tense formation [18]. 

 

5. Experimental Design 

 

In order to explore the behaviour of the model in different lineages, i.e. sequences of 

development, selection and breeding, three replications of the model were tested, each having 

a twenty-generation duration. The experiments were conducted on Condor, a platform that 

supports running high throughput computing on large collections of distributive owned 

computing resources [44]. It follows a master-slave type configuration, which has proved 

suitable for training neural network architectures [32]. 

Each lineage was characterised by its own initial population (produced with random binary 

genomes) and unique initial weights. The evolutionary methodology was then applied to each 

of these model instantiations, such that they all shared the same range of variation for genetic 

and shared environmental influences. At the same time, however, they were unique, for each 

of them began with a different initial population created from random binary genomes. The 

three replications (r1, r2, and r3) of the model permitted evaluation of the robustness of the 

method. Once the genomes and parameters were generated for the initial set of 50 MZ and 50 

DZ twins in a lineage, these were instantiated as three-layered feed-forward networks and 

were trained using the batch version of the Rprop algorithm [1, 40]. The stopping condition 

was an error goal (mean squared error) of 10
-5

 within 1000 epochs.  

Since the focus of these experiments was to explore individual differences in performance 

and heritability over generations, instead of seeking an “optimal” solution as typically 

happens when genetic algorithms are used, three replications were considered adequate as 

they allowed comparing a population of 12000 ANNs models across replications.  



 

Table 5 summarises the settings used in the experimental design. Empirical data from young 

children performing the past tense task [18, 49], were used to benchmark the performance of 

the proposed model, which has been the subject of considerable research in the literature. 

 
No of Generations 20 

 Size of population Breeding = 100;   

Non-breeding= 100  

Total r1+r2+r3 across generations= 12,000 

ANNs 

Size of Datasets Training= 508 

Generalisation= 508 

Training Mode Batch 

Max. training epochs 1000 

Goal MSE  10-5 

Rprop’s increment to weight update-

value, delta_inc 

1.2 

Rprop’s decrement to weight update-

value, delta_min 

0.5 

Maximum size of update-value, deltamax 50.0 

Minimum size of update-value, deltamin 10-6  

Initial update-value (Rprop learning rate), 

delta0 

Values from genome 

Hidden units. Steepness of logistic Values from genome 

Selection Operator Roulette Wheel- applied at the end of 

training (1000 epochs) 

Crossover 6 crossovers/chromosome; different 

operators used 

Environmental Factor Probability value between 60% and 100% 

 

Table 5: Experimental settings 

 

 

 

6. Results & Discussion 

 

The overall accuracy of the model on regular verbs was higher than that on irregular verbs. 

The mean performance on the full training set ranged between 74% and 80% for regular 



 

verbs, and between 34% and 40% for irregular verbs. The model was able to efficiently 

generalise the past tense rule in novel items with the mean accuracy rate of around 60%.  

The performance of the model compares well with empirical data for children reported in the 

literature [2, 52]. The behavioural data in [2] comprise of performance results of 442 6-year 

old children on past tense test. They were tested on 11 regular verbs and 8 irregular verbs. 

The average accuracy achieved by children on regular verbs was 90%, whereas the average 

accuracy for irregular verbs was 38%. It is also consistent with the performance reported in 

the developmental study of [52] for 5-7 year old children: for regular verbs, accuracy rates 

were 60% (5 year olds), 75% (6 year olds) and 80% (7 year olds); for irregular verbs, 

accuracy rates were 25% (5 year olds), 58% (6 year olds) and 50% (7 year olds). 

We compared the model’s performance with two other past-tense models from [49] and [18]. 

In the former model, 1000 networks were trained for 1000 epochs in various degrees of 

environmental and genetic variation scenarios. The experimental setting that closely matched 

our experiments, referred to as G-wide and E-narrow, resulted in average accuracy of 80% 

for regular verbs and 38% for irregular verbs. In latter case, the model comprised of networks 

trained for 400 epochs, with results averaged over 10 replications with different random 

seeds. The results corresponding to 6 year olds fall in the range of 60%-80% in case of 

regular verbs and between 20%-40% for irregular verbs, achieved in the window of 51-70 

epochs.  Their model also achieved over 80% generalisation accuracy. 

Changes in performance levels, heritability estimates, and parameter values over generations 

were initially analysed using independent linear regressions. Individually reliable trend lines 

at the p=.05 level are shown on the following figures. Given the overall design, which 

combined repeated measures (e.g., regular verb performance, irregular verb performance, 

generalisation) and between group measures (replication population; breeding vs. non-



 

breeding populations), trajectory analysis was used to assess overall patterns in the 

component linear regressions [47]. 

Figure 1 depicts the mean accuracy with which breeding and non-breeding twin populations 

formed past tenses for regular verbs across a sequence of generations, for three replications 

with differential initial genomes. These graphs summarise the results from 12,000 networks. 

Figure 2 shows equivalent data for irregular verbs, while Figure 3 represents the 

generalisation results. In each case, a zigzagged line indicates the mean accuracy level of the 

100 networks for each population at each generation, while a straight line represents the 

general trend observed in that replication scenario. The trend line was derived from a linear 

regression line based on the least squares method, predicting mean performance level from 

generation number. R
2
 values were relatively small, reflecting the non-monotonic changes in 

performance over generations. This is in line with changes in mean trait levels in animal 

populations following selective breeding, such as the open field behaviour of mice [11, 37]. 

A star in these figures signifies replications where the change over generations was 

statistically significant at the p<.05 level using linear methods. 

  

  
 

Figure 1: Mean performance per generation for breeding (left) and non-breeding (right) twin populations on regular verbs. The three lines 

show three different lineages. Statistically reliable (p<.05) trend lines are marked with a star (*) 

 



 

  

Figure 2: Mean performance per generation for breeding (left) and non-breeding (right) twin populations on irregular verbs. The three lines 

show three different lineages. Statistically reliable (p<.05) trend lines are marked with a star (*) 

  
 

Figure 3: Mean generalisation accuracy per generation for breeding (left) and non-breeding (right) twin populations. The three lines show 

three different lineages. Statistically reliable (p<.05) trend lines are marked with a star (*) 

 

We initially considered performance of application of the past tense rule, comparing the 

measures of regular verb performance against generalisation, for the three replications and 

breeding versus non-breeding populations (12 trajectories). A fully factorial ANCOVA 

revealed no overall change in performance across the generations (F(1,108)=2.23, p=.138, 

p
2
=.020). However, this masked a differential pattern between replications, with some 

showing rising performance and others no change (F(2,108)=8.65, p<.001, p
2
=.138). This 

pattern was common across measures and breeding/non-breeding populations. Regular verb 

performance was reliably higher than generalisation (F(1,108)=6288.30, p<.001, p
2
=.983).  

Irregular verb performance, by contrast, showed no individual population with rising 

performance across generations, though the replication populations showed consistently 



 

different levels of accuracy (F(2,108)=3.27, p=.042, p
2
=.057). Comparison to regular verb 

performance indicated that the relationship between performance and generation was reliably 

modulated by measure (F(2,108)=4.53, p=.013, p
2
=.077). Regular verb performance was 

also reliably higher than irregular verb performance (F(1,108)=9958.42, p<.001, p
2
=.989). 

Most notable in Figures 1 to 3 is the presence of some downward trends in performance over 

generations, despite the operation of selection. Selection should serve to improve 

performance over generations, since genes conveying an advantage in learning are more 

likely to be transmitted to the next generation. The probabilistic nature of this transmission – 

the mode of sexual reproduction does not guarantee that the advantageous genes of an 

individual selected to breed will appear in the offspring, and the selection mechanism is itself 

probabilistically related to final performance level – accounts for the slow change in 

population mean performance over generations. It does not account for why performance 

should become worse over generations. 

The explanation is suggested by the fact that opposite trends were observed for regular verbs 

and irregulars (with generalisation patterning with regular verbs). When performance across 

generations was worsening for regular verbs, it was improving for irregular verbs, and vice 

versa. This is most evident in a comparison of replication 1, where irregulars showed a trend 

to improve over generations but regulars to worsen, and replication 3, where regulars showed 

a trend to improve but irregulars worsen (3-way interaction of verb type by generation by 

replication: F(1,36)=4.64, p=.038, p
2
=.114). 

Because the learning domain of English past tense is quasi-regular, good performance across 

all mappings could in principle be achieved by scoring strongly on regular verbs, strongly on 

irregular verbs, or strongly on both (with regular verbs the more powerful driver, being in the 

majority). If optimising the same computational parameters enhanced both types of mapping, 

then selecting for either strong regular or strong irregular performance should enhance the 



 

performance of the population on the other mapping type as well. However, it is known that 

the two types of mappings are differentially sensitive to different parameters in ANNs. For 

example, regular mappings benefit from steeper sigmoid functions, while irregular mappings 

require more hidden units [48]. The combination of (a) selection by mean performance that 

could either be driven by stronger regular or irregular verb performance, and (b) parameters 

that favour learning of either regular or irregular mappings, together sets the stage for 

possible divergence of gene pools over generations. Even in the face of selection, some 

lineages may become specialised for regular verbs at the expense of irregular verbs, while 

other lineages may become specialised for irregular verbs at the expense of regular verbs. Yet 

others may show increased performance in both verb types across generations. Which path a 

given starting population follows will depend on the distribution of parameters created by the 

initial genomes, the set of individual environments, and stochastic factors involved in 

selection and breeding. Once genes are lost from the population that are beneficial for the 

non-preferred verb type, these cannot be regained. Selection can only then improve 

performance by continuing to select for genes for the preferred verb type. 

This phenomenon is analogous to Waddington’s epigenetic landscape, an idea proposed by 

Conrad Waddington to account for restriction of fate in development ([13], pp R459). In his 

model, Waddington associated the process of cellular differentiation to a marble, representing 

a pluripotent cell, on top of a hill. The hill contains many paths or valleys that the marble can 

roll down and each path will eventually lead to a distinct final differentiated state, such as a 

blood cell or a skin cell. He described each of the valleys as an individual developmental 

pathway or ‘chreode’. As the marble moves down the hill the paths and final destinations 

available become more limited, representing the increased differentiation of the cell [53]. 

This is what makes an initial pluripotent cell to become a specialised cell, and reversing this 

process is impossible under normal circumstances. In this case, the restriction of fate occurs 



 

over generations in selection of genes for parameter values more appropriate to one or other 

verb type. 

Changes in the frequency of different gene variants (here, binary values of 0 or 1) in the gene 

pool should alter the range of genetic variation across generations, since any effective 

operation of selection would reduce genetic diversity. Given that the range of environmental 

variation (EF of 0.6 to 1.0) remained consistent across generations, genetic diversity could 

explain less of the phenotypic variation, and a corresponding reduction in heritability would 

be expected. To test this idea, we examined correlations in performance between MZ and DZ 

network twin pairs, using Falconer’s equations to derive estimates of heritability [37]. 

Heritability was estimated as twice the difference between MZ and DZ correlations; unique 

environmental effects as the extent to which MZ correlations were less than 1; and shared 

environment effects as the remaining variance (i.e., 1-{heritability}-{unique environment}). 

Strictly speaking, these equations assume an additive model, which only holds for MZ 

correlations that are no more than twice DZ correlations. In our results the correlations 

sometimes violated this condition. However, for consistency, we plot heritability estimates 

according to the same formulae across conditions, though the values sometimes range outside 

of the range 0 to 1 as the assumptions of the additive model become violated. The plotted 

data should therefore be seen as proportional to the heritability and environmentability 

observed in populations, rather than direct estimates under an additive model.  

Figure 4 shows the estimates of heritability (variance due to genetic factors) for regular (4a) 

and irregular verbs (4b). These six trajectories were compared in a fully factorial ANCOVA. 

Heritability reliably reduced over generations (F(1,54)=5.54, p=.022, p
2
=.093), and this 

pattern was not modulated by measure or replication population. Though replication 2 

showed the steepest reduction in heritability, the difference in the pattern across replications 

was not reliable (p=.107). 



 

 

Figure 4(a): Heritability or proportion of variance due to 

genetic (or structural) factors for Regular Verbs. The three lines 

show three different lineages. Statistically reliable (p<.05) trend 

lines are marked with a star (*) 

 

Figure 4(b): Heritability or proportion of variance due to 

genetic (or structural) factors for Irregular Verbs. The three 

lines show three different lineages. Statistically reliable (p<.05) 

trend lines are marked with a star (*) 

 

If a lineage becomes increasingly optimised on a task (or a specific aspect of the task 

domain), the range of the intrinsic parameters relevant to that task (so-called domain-relevant 

parameters) should decrease across generations, as only the genes producing the preferred 

parameter values are retained. For example, if populations are improving on irregular verbs, 

which require more capacity to hold non-systematic mappings, then across generations, 

networks with larger number of hidden units would have a greater chance to get selected in 

the breeding pool. Across generations, the variability in the range of number of hidden units 

would reduce. By contrast, the range of variation in other parameters less relevant to irregular 

verb performance would be less affected. Optimisation and heritability should therefore have 

an inverse relationship in this case. 

Figure 5 plots the performance levels and heritability estimates for regular verbs, which 

showed the strongest optimisation, for all replications across all generations. It shows a 

reliably negative relationship between performance and heritability as predicted (R
2
=.079, 

F(1,118)=10.12, p=.002). The more population mean performance increased, the lower the 

heritability estimate. However, the lineages behaved differently in detail. 

 



 

 

In replication/lineage 1, regular verb performance and rule generalisation dropped across 

generations while irregular verb performance improved. Heritability for regular verbs was 

initially higher than that for irregular verbs, centred on 0.4 and it then increased across 

generations, implying lack of selection for parameter sets specialised for regularity. By 

contrast, heritability of irregular verbs was lower, centred on 0.2, and decreased with 

generations, implying selection for, and a narrowing of the range of, parameter sets 

specialised for irregularity. Note that this process of specialisation caused overall accuracy to 

drop, because irregular verbs form a minority of the dataset (there were only 98 irregular 

verbs compared to 410 regular verbs).  

In replication/lineage 2, regular verb performance, irregular verb performance, and 

generalisation all increased across generations. Heritability of regular verbs dropped from 

around 0.8 to around zero. A similar pattern was observed for irregular verbs, with 

heritability dropping from high values to almost zero. In this lineage, optimisation caused a 

narrowing of the range of genetic variation relevant to learning of both regular and irregular 

verbs. 

In replication/lineage 3, regular verb performance and generalisation improved while 

irregular verb performance dropped. The heritability of regular verbs decreased from 0.6 to 

0.2 while the heritability of irregulars remained stable, at around 0.2. These two observations 

suggest that the range of intrinsic parameters being targeted by selection initially 

Figure 5: Negative association between heritability 

and population mean performance on regular verbs 

(data for all generations and lineages) 



 

accommodated both regular and irregulars, but as generations progressed, there was a 

narrowing in this range for parameters more suited to regular verbs. 

When heritability of a particular aspect of the task reduces, it implies that variance in 

performance is less due to genetic factors and more due to shared and non-shared 

environmental factors. Figures 6(a) and 6(b) display the variance due to shared environmental 

factors, in this case the filtered training datasets. The effect of shared environment reliably 

changed over generations (F(1,54)=8.42, p=.005, p
2
=.135) though this was driven primarily 

by replication 2, illustrated by an interaction of - population × generation (F(2,54)=3.65, 

p=.033, p
2
=.119). The pattern was common across regular and irregular verbs. Figures 6(c) - 

6(f) confirm that, though stochastically sampled, the range and mean level of EF was constant 

across generations for all lineages. 

 

Figure 6(a): Proportion of variance due to shared environmental 

factors - Regular Verbs 

 

Figure 6(b): Proportion of variance due to shared environmental 

factors - Irregular Verbs 

 

 

Figure 6(c): Percentage of EF per generation replication1 

 

Figure 6(d): Percentage of EF per generation replication2 

 



 

 

Figure 6(e): Percentage of EF per generation replication3 

 

Figure 6(f): Percentage of EF per replication 

 

Figures 7(a) and 7(b) represent the variance in performance due to non-shared environmental 

factors or initial weights in our implementation. Analyses revealed no reliable effects, with 

non-shared environmental effects consistent across generations and modulated neither by 

measure type nor by replication population. The figures show that the differences in initial 

weights led to large variability in behavioural outcomes. In cases when intrinsic factors were 

not very suitable to the task domain, having good initial weights might give networks a 

fighting chance, exaggerating the impact of intrinsic stochastic factors. 

 

 

Figure 7(a): Proportion of variance due to non-shared 

environmental factors - Regular Verbs 

 

Figure 7(b): Proportion of variance due to non-shared 

environmental factors - Irregular Verbs 

 

 

Heritability is a useful statistic because it is scalable across potentially very large numbers of 

computational parameters (and their interactions) that contribute to the variation in learned 

high-level behaviours, or in this case, the outcome of learning for a set of ANNs. However, in 



 

the current simulations, relatively few parameters were encoded in the genome and permitted 

to vary across populations and between generations. Our final step of analysis, then, was to 

examine the change in mean parameter values for a given lineage across generations. This 

should reveal the domain-relevant parameters that were selected, in those cases where 

performance on one verb type was enhanced at the expense of the other, and therefore in turn 

reveal the drivers behind changes in heritability. Figure 8 depicts changes in mean parameter 

values for number of hidden units, initial learning rate, and slope of the logistic activation 

function. For hidden units, there was a reliable reduction in number across generation 

(F(1,54)=190.55, p<.001, p
2
=.779), with the reduction occurring at different rates across the 

three replication populations (F(2,54)=33.79, p<.001, p
2
=.556). 

 

For learning rate, the same pattern was observed: reduction across generations 

(F(1,54)=22.69, p<.001, p
2
=.296) modulated by replication, with the reduction appearing in 

 

Figure 8 (a): Change in the mean value of the number of hidden 

units per generation 

 

Figure 8 (b): Change in the mean value of the initial learning rate per 

generation 

 

Figure 8(c): Change in the mean value of the slope of logistic activation per generation 



 

only two of the three replications (F(2,54)=12.22, p<.001, p
2
=.312). Lastly, for slope of 

logistic activation, there was an increase in two of the populations across generations and a 

reduction in the other (main effect of generation: F(1,54)=12.99, p<.001, p
2
=.325; 

interaction of generation*replication: F(2,54)=61.06, p<.001, p
2
=.693). Overall, replication 

1 and 3 showed a common pattern of reduction in hidden units, reduction of learning rate, and 

increase in temperature. For replication 1, the reduction in hidden was milder, the learning 

rate fell lower, and the temperate rose higher. Replication 2 showed a different pattern of a 

greater fall in hidden units, no change in learning rate, and a drop in temperature (i.e. slope of 

logistic activation). 

The three chosen parameters provided networks with capacity to learn (more hidden units can 

accommodate more input-output mappings) and/or ability to learn (optimum values of initial 

learning rate and steepness of logistic activation allow discovery of connection weights for 

those mappings). Irregular verbs belong to category of non-systematic mappings, which are 

more demanding on computational capacity. Figure 9 depicts the variation in the ranges of 

the three parameters across generations.  In Figure 9, on every box, the central mark is the 

median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the 

most extreme data points not considered outliers and the outliers are marked separately by '+'. 

The height of the box represents the inter quartile range (IQR) of the data set, which is the 

difference between the 75th percentile and 25th percentile. The lines at the end of the 

whiskers mark the highest and lowest values of the data set that are within 1.5 times the inter 

quartile range of the box edge. 

The figure reveals the parameters being targeted by selection in each lineage. While the range 

of variation of computational parameters appears uniformly spread throughout the lineages, 

the range skews towards values that make the parameters act in domain-relevant way, and 

produces the observed changes in heritability. 



 

Lineage/replication 1 improved irregular performance at the expense of regular, and this was 

reflected by maintenance of high levels of hidden units. Learning rates declined, while genes 

for steeper logistic slopes were selected.  

Regular verbs have systematic input-output mappings, which are less demanding on 

computational capacity. Lineage/replication 2 improved regular performances at the expense 

of irregular verbs, and this was reflected by an increase in learning rate. Both hidden unit 

numbers and logistic slope declined. 

In lineage/replication 3, the main improvement over generations was on regular verbs. As 

with lineage 2, there was a decline in hidden unit number, but unlike lineage 2 there was also 

a decline in learning rate. Instead, the logistic slope showed an increase, which lineage 1 

suggested was more sympathetic to accommodating irregular mappings. 

 



 

 Variations in the range of hidden units Variation in the range of initial learning rate Variation in the range of slope of logistic activation 
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Figure 9: Range of variation of intrinsic parameters across generations. Boxes represent the interquartile range (IQR), whiskers the range excluding outliers, and + mark outliers (outside 1.5*IQ)



 

7. Findings 

 

Research in artificial life has been interested in the relationship between evolution and 

learning as complementary optimisation techniques for ANN [9, 28]. Evidence suggests that 

evolution can select network parameters and starting states that improve learning outcomes. 

Here we considered this relationship in a model where heritable network properties were 

passed between generations via a simulated process of sexual reproduction, where networks 

were exposed to learning environments of variable quality, and where the problem domain 

was quasi-regular, providing greater challenges for optimisation. The main findings were as 

follows: (i) Applying selection on the individual’s performance level in a quasi-regular task 

such as past tense acquisition, results in the emergence of divergent behaviours depending on 

initial conditions – both genetic and environmental. (ii) Once selection starts targeting a 

particular aspect of task domain, there is restriction of fate or ‘canalisation’ in a fashion 

analogous to Waddington’s epigenetic landscape, but now in an evolutionary sense rather 

than a developmental one. From an initial pluripotent state, the pathway of a lineage can 

become optimised to regular or irregular properties of the domain in a way that cannot be 

reversed. (iii) Assumptions of the framework, inspired by behavioural genetics, restricted 

optimisation in three ways. First, because the quality of the learning environment varied 

independently of the quality of the genotype, it was harder to assign credit/blame to the 

genotype on the basis of the outcome of learning. Second, if preferential properties of the 

genome were to be identified, their transmission to the next generation is compromised by 

probabilistic (roulette) selection to reproduce, by sexual reproduction which only 

probabilistically passes on advantageous traits, and by death (removal of the advantaged 

individual from the population). (iv) Heritability is a metric that identifies the net contribution 

of genotypic variation to phenotypic variation that is invariant to the number of parameters 

contributing to that variation. In this case, it acted as an identifier of the aspect of the quasi-



 

regular task being targeted by selection. Highly heritable behaviour indicates that the trait is 

not being selected for, whereas behaviour with reducing heritability implies selection and 

optimisation. Therefore an inverse relationship exists between heritability and optimisation. 

(v) When selection operated, a higher proportion of variance due to shared environmental 

factors (filtered training sets) was associated with stronger learning. (vi) Non-shared 

environmental factors (initial weights) led to notable proportions of behavioural variance. 

This effect was larger when intrinsic properties were not particularly suitable and chance 

superior initial weight configurations were necessary to have good learning outcomes.  

Finally, like all simulations that employ stochastic factors, the results would benefit from 

further replications, here of lineage on the one hand, and extended selection across 

generations on the other hand to ensure that convergence has been achieved. In the training of 

a single ANN, regular verbs are learnt first; with continued training, learning of irregular 

verbs follows as these exception mappings are accommodated around the connectivity that 

supports the regular past tense rule [39, 41]. However, evolution is not like development. 

Once the genes are lost for the computational properties that enable learning of irregulars 

alongside regulars, this potential cannot be regained by further selection over more 

generations. Additional trials in the context of transfer learning reported in [22] reveal that 

this behaviour is also encountered in other datasets. 

 

8. Conclusion 

 

In this paper, we introduced a novel computational approach inspired from principles of 

behavioural genetics to model the performance of 6-year-old children on English past tense 

acquisition. We analysed the proportion of variance accounted for by ANN computational 

parameters (encoded in an artificial genome) and filtered training sets and initial weights 

(equivalent to the effect of environment), highlighting the impact of selection and sexual 



 

reproduction methods. Our model was able to identify the causal factors leading to 

behavioural / performance variability within the population. The model demonstrated that 

divergent behavioural outcomes can emerge when selection is applied on a quasi-regular task, 

where selection of parameters becomes more specialised in one aspect of the task across 

generations. Importantly, the model showed that heritability and optimisation have an inverse 

relationship, with heritability identifying which aspects of the task domain are being targeted 

by selection. Several avenues require further investigation, including replication across 

lineages and more extended selection to verify convergence. Theoretically, more complex 

genome representations may allow encoding more computational parameters and increased 

genetic variability. Alternative selection schemes may alter divergence of population 

genotypes over generations, as might non-random assignment of environments to genotypes 

(gene-environment correlations) which is observed to occur in human populations [20]. 
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1. Simulate variations in genetic influences  

 Encode neurocomputational parameters into genome 

 Calibrate range of variation of each of these parameters 

2. Simulate variations in environmental influences 

 Apply SES-based filter to dataset to generate unique training subset  for each twin pair   

3. Generate initial population of ANN twins,      such that each individual is an ANN 

characterised by its own genetic and environmental influences. Set       

4. REPEAT 

(a) Train each individual (ANN twin) using some local search mechanism 

(b) Evaluate Fitness of each individual ANN according to training performance result for 

regular verbs, irregular verbs and combined performance. Also calculate heritability by 

comparing similarity of identical and fraternal twin pairs 

(c) Select parents from      based on their fitness on combined (overall) performance 

(d) Apply search operators to parents to produce offspring which form        

5. UNTIL, termination criterion is met 

Table 1: High-level description of BG-inspired English past-tense model 

 



 

Parameters Range of variation 

No of hidden units 10 - 500 

Initial Learning rate 0.07 - 0.1 

Slope of logistic 0.0625 - 4.0 

 

Table 2: Genome representing ANN parameters and their ranges 

 



 

1. Generate initial population      of   members at random 

2. Split the population members into two groups of size 
 

 
 representing fathers and mothers 

3. REPEAT 
(a) For each parent, split genome into two equal halves resulting in two chromosomes 

per individual such that each chromosome carries half the information for each 
encoded parameter 

(b) Apply crossover m times on each chromosome pair, every crossover resulting in 
either two sperms or two eggs 

(c) Combine the sperms and eggs using positional recombination such that half of the 
encoded genetic information comes from sperm and other half from egg resulting    
possible offspring 

(d) Verify the genetic similarity between twin pairs and accordingly choose MZ and DZ 
twins pairs, picking only one offspring per crossover 

4. UNTIL population of desired size   is obtained 

Table 3: Meiosis and fertilisation based method for creating population of ANN twins 

 



 

Input: Actual output of network,    

Desired output,    

Output: Performance accuracy,   

Variables:    total number of patterns in    

   total number of patterns in    

    a pattern in   , where       

    a pattern in   , where       

      Hamming distance between phonemes of    and    

       Hamming distance between allomorphs (or the last 5 bits) of    and    

                

1. initialise                           

2. for                       Repeat 

3.      Split    into three phonemes and allomorph 

4.      for                   do 

5.           Split    into three phonemes and allomorph 

6.           Calculate       between corresponding phonemes of     and    

7.           If                         (for all three phonemes) do 

8.                Calculate        between respective allomorphs 

9.                If          , do 

10.                                    

11.                                 ; 

12.                      Break; 

13.                Else 

14.                                  

15.                end 

16.           end 

17.      end 

18.      If                         do 

19.                       

20.      end 

21. end 

22.    
    

 
        

23.    Return   

Table 4: Recognition accuracy based performance calculation algorithm 



 

No of Generations  20 

 Size of population Breeding = 100;   

Non-breeding= 100  

Total r1+r2+r3 across generations= 12,000 

ANNs 

Size of Datasets Training= 508 

Generalisation= 508 

Training Mode Batch 

Max. training epochs 1000 

Goal MSE  10-5 

Increment to weight change, delta_inc 1.2 

Decrement to weight change, delta_min 0.5 

Maximum weight change, deltamax 50.0 

Minimum weight change, deltamin 10-6  

Initial weight update (Rprop learning 

rate), delta0 

Values from genome 

Hidden units. Steepness of logistic Values from genome 

Selection Operator Roulette Wheel- applied at the end of 

training (1000 epochs) 

Crossover 6 crossovers/chromosome; different 

operators used 

Environmental Factor Probability value between 60% and 100% 

 

Table 5: Experimental settings 

 

 



 

  
 

Figure 1: Mean performance per generation for breeding (left) and non-breeding (right) twin populations on regular verbs. The three lines 

show three different lineages. Statistically reliable (p<.05) trend lines are marked with a star (*) 

 



 

  

Figure 2: Mean performance per generation for breeding (left) and non-breeding (right) twin populations on irregular verbs. The three lines 

show three different lineages. Statistically reliable (p<.05) trend lines are marked with a star (*) 



 

  
 

Figure 3: Mean generalisation accuracy per generation for breeding (left) and non-breeding (right) twin populations. The three lines show 

three different lineages. Statistically reliable (p<.05) trend lines are marked with a star (*) 

 

 



 

 

Figure 4(a): Heritability or proportion of variance due to genetic (or structural) factors for Regular Verbs. The three lines show three 

different lineages. Statistically reliable (p<.05) trend lines are marked with a star (*) 

 

 

Figure 4(b): Heritability or proportion of variance due to genetic (or structural) factors for Irregular Verbs. The three lines show three 

different lineages. Statistically reliable (p<.05) trend lines are marked with a star (*) 

 



 

 

 

 

Figure 5: Negative association between heritability and population mean performance on regular verbs (data for all generations and 

lineages) 

 

 



 

 

Figure 6(a): Proportion of variance due to shared environmental 

factors - Regular Verbs 

 

Figure 6(b): Proportion of variance due to shared environmental 

factors - Irregular Verbs 

 

 

Figure 6(c): Percentage of EF per generation replication1 

 

Figure 6(d): Percentage of EF per generation replication2 

 

 

Figure 6(e): Percentage of EF per generation replication3 

 

Figure 6(f): Percentage of EF per replication



 

 

Figure 7(a): Proportion of variance due to non-shared environmental factors - Regular Verbs 

 

Figure 7(b): Proportion of variance due to non-shared environmental factors - Irregular Verbs 

 

 
 



 

 

 

 

  

 

Figure 8 (a): Change in the mean value of the number of hidden 

units per generation 

 

Figure 8 (b): Change in the mean value of the initial learning rate per 

generation 

 

Figure 8(c): Change in the mean value of the slope of logistic activation per generation 
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Figure 9: Range of variation of intrinsic parameters across generations. Boxes represent the interquartile range (IQR), whiskers the range excluding outliers, and + mark outliers (outside 1.5*IQR)



 

 


